skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2045246

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the past decade, remarkable advances in integrated photonic technologies have enabled table-top experiments and instrumentation to be scaled down to compact chips with significant reduction in size, weight, power consumption, and cost. Here, we demonstrate an integrated continuously tunable laser in a heterogeneous gallium arsenide-on-silicon nitride (GaAs-on-SiN) platform that emits in the far-red radiation spectrum near 780 nm, with 20 nm tuning range, <6 kHz intrinsic linewidth, and a >40 dB side-mode suppression ratio. The GaAs optical gain regions are heterogeneously integrated with low-loss SiN waveguides. The narrow linewidth lasing is achieved with an extended cavity consisting of a resonator-based Vernier mirror and a phase shifter. Utilizing synchronous tuning of the integrated heaters, we show mode-hop-free wavelength tuning over a range larger than 100 GHz (200 pm). To demonstrate the potential of the device, we investigate two illustrative applications: (i) the linear characterization of a silicon nitride microresonator designed for entangled-photon pair generation and (ii) the absorption spectroscopy and locking to the D1 and D2 transition lines of 87Rb. The performance of the proposed integrated laser holds promise for a broader spectrum of both classical and quantum applications in the visible range, encompassing communication, control, sensing, and computing. 
    more » « less
  2. Integrated photonic microresonators have become an essential resource for generating photonic qubits for quantum information processing, entanglement distribution and networking, and quantum communications. The pair-generation rate is enhanced by reducing the microresonator radius, but this comes at the cost of increasing the frequency-mode spacing and reducing the quantum information spectral density. Here, we circumvent this rate-density trade-off in an Al Ga As -on-insulator photonic device by multiplexing an array of 20 small-radius microresonators, each producing a 650-GHz-spaced comb of time-energy entangled-photon pairs. The resonators can be independently tuned via integrated thermo-optic heaters, enabling control of the mode spacing from degeneracy up to a full free spectral range. We demonstrate simultaneous pumping of five resonators with up to 50 -GHz relative comb offsets, where each resonator produces pairs exhibiting time-energy entanglement visibilities up to 95 % , coincidence-to-accidental ratios exceeding 5000 , and an on-chip pair rate up to 2.6 G Hz / mW 2 per comb line—an improvement over prior work by more than a factor of 40. As a demonstration, we generate frequency-bin qubits in a maximally entangled two-qubit Bell state with fidelity exceeding 87 % ( 90 % with background correction) and detected frequency-bin entanglement rates up to 7 kHz (an approximately 70 MHz on-chip pair rate) using a pump power of approximately 250 μ W . Multiplexing small-radius microresonators combines the key capabilities required for programmable and dense photonic qubit encoding while retaining high pair-generation rates, heralded single-photon purity, and entanglement fidelity. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. The development of manufacturable and scalable integrated nonlinear photonic materials is driving key technologies in diverse areas, such as high-speed communications, signal processing, sensing, and quantum information. Here, we demonstrate a nonlinear platform—InGaP-on-insulator—optimized for visible-to-telecommunication wavelength χ(2) nonlinear optical processes. In this work, we detail our 100 mm wafer-scale InGaP-on-insulator fabrication process realized via wafer bonding, optical lithography, and dry-etching techniques. The resulting wafers yield 1000 s of components in each fabrication cycle, with initial designs that include chip-to-fiber couplers, 12.5-cm-long nested spiral waveguides, and arrays of microring resonators with free-spectral ranges spanning 400–900 GHz. We demonstrate intrinsic resonator quality factors as high as 324 000 (440 000) for single-resonance (split-resonance) modes near 1550 nm corresponding to 1.56 dB/cm (1.22 dB/cm) propagation loss. We analyze the loss vs waveguide width and resonator radius to establish the operating regime for optimal 775–1550 nm phase matching. By combining the high χ(2) and χ(3) optical nonlinearity of InGaP with wafer-scale fabrication and low propagation loss, these results open promising possibilities for entangled-photon, multi-photon, and squeezed light generation. 
    more » « less
  4. Using an aluminum gallium arsenide microring resonator, we demonstrate a bright quantum optical microcomb with >300 nm (>40 THz) bandwidth and more than 20 sets of time–energy entangled modes, enabling spectral demultiplexing with simple, off-the-shelf commercial telecom components. We report high-rate continuous entanglement distribution for two sets of entangled-photon pair frequency modes exhibiting up to 20 GHz/mW2pair generation rate. As an illustrative example of entanglement distribution, we perform a continuous-wave time-bin quantum key distribution protocol with 8 kbps sifted key rates while maintaining less than 10% error rate and sufficient two-photon visibility to ensure security of the channel. When the >20 frequency modes are multiplexed, we estimate >100 kbps entanglement-based key rates or the creation of a multi-user quantum communications network. The entire system requires less than 110 µW of on-chip optical power, demonstrating an efficient source of entangled frequency modes for quantum communications. As a proof of principle, a quantum key is distributed across 12 km of deployed fiber on the University of California Santa Barbara (UCSB) campus and used to encrypt a 21 kB image with <9% error. 
    more » « less
  5. Integrated photonics provides a powerful approach for developing compact, stable, and scalable architectures for the generation, manipulation, and detection of quantum states of light. To this end, several material platforms are being developed in parallel, each providing its specific assets, and hybridization techniques to combine their strengths are available. This review focuses on AlGaAs, a III–V semiconductor platform combining a mature fabrication technology, direct band-gap compliant with electrical injection, low-loss operation, large electro-optic effect, and compatibility with superconducting detectors for on-chip detection. We detail recent implementations of room-temperature sources of quantum light based on the high second- and third-order optical nonlinearities of the material, as well as photonic circuits embedding various functionalities ranging from polarizing beamsplitters to Mach–Zehnder interferometers, modulators, and tunable filters. We then present several realizations of quantum state engineering enabled by these recent advances and discuss open perspectives and remaining challenges in the field of integrated quantum photonics with AlGaAs. 
    more » « less
  6. Aluminum gallium arsenide-on-insulator (AlGaAsOI) exhibits large χ2 and χ3 optical nonlinearities, a wide tunable bandgap, low waveguide propagation loss, and a large thermo-optic coefficient, making it an exciting platform for integrated quantum photonics. With ultrabright sources of quantum light established in AlGaAsOI, the next step is to develop the critical building blocks for chip-scale quantum photonic circuits. Here we expand the quantum photonic toolbox for AlGaAsOI by demonstrating edge couplers, 3 dB splitters, tunable interferometers, and waveguide crossings with performance comparable to or exceeding silicon and silicon-nitride quantum photonic platforms. As a demonstration, we de-multiplex photonic qubits through an unbalanced interferometer, paving the route toward ultra-efficient and high-rate chip-scale demonstrations of photonic quantum computation and information applications. 
    more » « less