skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2045785

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis Torpor was traditionally seen as a winter survival mechanism employed by animals living in cold and highly seasonal habitats. Although we now know that torpor is also used by tropical and subtropical species, and in response to a variety of triggers, torpor is still largely viewed as a highly controlled, seasonal mechanism shown by Northern hemisphere species. To scrutinize this view, we report data from a macroanalysis in which we characterized the type and seasonality of torpor use from mammal species currently known to use torpor. Our findings suggest that predictable, seasonal torpor patterns reported for Northern temperate and polar species are highly derived forms of torpor expression, whereas the more opportunistic and variable forms of torpor that we see in tropical and subtropical species are likely closer to the patterns expressed by ancestral mammals. Our data emphasize that the torpor patterns observed in the tropics and subtropics should be considered the norm and not the exception. 
    more » « less
  2. Synopsis Variability in body temperature is now recognized to be widespread among whole-body endotherms with homeothermy being the exception rather than the norm. A wide range of body temperature patterns exists in extant endotherms, spanning from strict homeothermy, to occasional use of torpor, to deep seasonal hibernation with many points in between. What is often lost in discussions of heterothermy in endotherms are the benefits of variations in body temperature outside of torpor. Endotherms that do not use torpor can still obtain extensive energy and water savings from varying levels of flexibility in normothermic body temperature regulation. Flexibility at higher temperatures (heat storage or facultative hyperthermia) can provide significant water savings, while decreases at cooler temperatures, even outside of torpor, can lower the energetic costs of thermoregulation during rest. We discuss the varying uses of the terms heterothermy, thermolability, and torpor to describe differences in the amplitude of body temperature cycles and advocate for a broader use of the term “heterothermy” to include non-torpid variations in body temperature. 
    more » « less