Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            A<sc>bstract</sc> Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb−1ofppcollision data at$$ \sqrt{s} $$ = 13 TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be$$ {1.04}_{-0.09}^{+0.10} $$ . Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with aWorZboson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with ap-value of 93%. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.more » « less
- 
            Abstract This paper presents the observation of four-top-quark ($$t\bar{t}t\bar{t}$$ ) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 $$\hbox {fb}^{-1}$$ at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured$$t\bar{t}t\bar{t}$$ signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The$$t\bar{t}t\bar{t}$$ production cross section is measured to be$$22.5^{+6.6}_{-5.5}$$ fb, consistent with the SM prediction of$$12.0 \pm 2.4$$ fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect$$t\bar{t}t\bar{t}$$ production.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
