skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2046488

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Low-pass single-cell DNA sequencing technologies and algorithmic advancements have enabled haplotype-specific copy number calling on thousands of cells within tumors. However, measurement uncertainty may result in spurious CNAs inconsistent with realistic evolutionary constraints. We introduce evolution-aware copy number calling via deep reinforcement learning (CNRein). Our simulations demonstrate CNRein infers more accurate copy-number profiles and better recapitulates ground truth clonal structure than existing methods. On sequencing data of breast and ovarian cancer, CNRein produces more parsimonious solutions than existing methods while maintaining agreement with single-nucleotide variants. Additionally, CNRein shows consistency on a breast cancer patient sequenced with distinct low-pass technologies. 
    more » « less
  2. Abstract Genes in SARS-CoV-2 and other viruses in the order ofNidoviralesare expressed by a process of discontinuous transcription which is distinct from alternative splicing in eukaryotes and is mediated by the viral RNA-dependent RNA polymerase. Here, we introduce the DISCONTINUOUS TRANSCRIPT ASSEMBLYproblem of finding transcripts and their abundances given an alignment of paired-end short reads under a maximum likelihood model that accounts for varying transcript lengths. We show, using simulations, that our method, JUMPER, outperforms existing methods for classical transcript assembly. On short-read data of SARS-CoV-1, SARS-CoV-2 and MERS-CoV samples, we find that JUMPER not only identifies canonical transcripts that are part of the reference transcriptome, but also predicts expression of non-canonical transcripts that are supported by subsequent orthogonal analyses. Moreover, application of JUMPER on samples with and without treatment reveals viral drug response at the transcript level. As such, JUMPER enables detailed analyses ofNidoviralestranscriptomes under varying conditions. 
    more » « less
  3. Pissis, Solon P; Sung, Wing-Kin (Ed.)
    Cancer phylogenies are key to understanding tumor evolution. There exist many important downstream analyses that take as input a single or a small number of trees. However, due to uncertainty, one typically infers many, equally-plausible phylogenies from bulk DNA sequencing data of tumors. We introduce Sapling, a heuristic method to solve the Backbone Tree Inference from Reads problem, which seeks a small set of backbone trees on a smaller subset of mutations that collectively summarize the entire solution space. Sapling also includes a greedy algorithm to solve the Backbone Tree Expansion from Reads problem, which aims to expand an inferred backbone tree into a full tree. We prove that both problems are NP-hard. On simulated and real data, we demonstrate that Sapling is capable of inferring high-quality backbone trees that adequately summarize the solution space and that can be expanded into full trees. 
    more » « less
  4. Przytycka, Teresa M. (Ed.)
    Emerging ultra-low coverage single-cell DNA sequencing (scDNA-seq) technologies have enabled high resolution evolutionary studies of copy number aberrations (CNAs) within tumors. While these sequencing technologies are well suited for identifying CNAs due to the uniformity of sequencing coverage, the sparsity of coverage poses challenges for the study of single-nucleotide variants (SNVs). In order to maximize the utility of increasingly available ultra-low coverage scDNA-seq data and obtain a comprehensive understanding of tumor evolution, it is important to also analyze the evolution of SNVs from the same set of tumor cells. We presentPhertilizer, a method to infer a clonal tree from ultra-low coverage scDNA-seq data of a tumor. Based on a probabilistic model, our method recursively partitions the data by identifying key evolutionary events in the history of the tumor. We demonstrate the performance ofPhertilizeron simulated data as well as on two real datasets, finding thatPhertilizereffectively utilizes the copy-number signal inherent in the data to more accurately uncover clonal structure and genotypes compared to previous methods. 
    more » « less
  5. Belazzougui, Djamal; Ouangraoua, Aïda (Ed.)
    The problem of designing an RNA sequence v that encodes for a given target protein w plays an important role in messenger RNA (mRNA) vaccine design. Due to codon degeneracy, there exist exponentially many RNA sequences for a single target protein. These candidate RNA sequences may adopt different secondary structure conformations with varying minimum free energy (MFE), affecting their thermodynamic stability and consequently mRNA half-life. In addition, species-specific codon usage bias, as measured by the codon adaptation index (CAI), also plays an essential role in translation efficiency. While previous works have focused on optimizing either MFE or CAI, more recent works have shown the merits of optimizing both objectives. Importantly, there is a trade-off between MFE and CAI, i.e. optimizing one objective is at the expense of the other. Here, we formulate the Pareto Optimal RNA Design problem, seeking the set of Pareto optimal solutions for which no other solution exists that is better in terms of both MFE and CAI. We introduce DERNA (DEsign RNA), which uses the weighted sum method to enumerate the Pareto front by optimizing convex combinations of both objectives. DERNA uses dynamic programming to solve each convex combination in O(|w|³) time and O(|w|²) space. Compared to a previous approach that only optimizes MFE, we show on a benchmark dataset that DERNA obtains solutions with identical MFE but superior CAI. Additionally, we show that DERNA matches the performance in terms of solution quality of LinearDesign, a recent approach that similarly seeks to balance MFE and CAI. Finally, we demonstrate our method’s potential for mRNA vaccine design using SARS-CoV-2 spike as the target protein. 
    more » « less
  6. Belazzougui, Djamal; Ouangraoua, Aïda (Ed.)
    Not only do many biological populations undergo evolution, but population members may also migrate from one location to another. For example, tumor cells may migrate from the primary tumor and seed a new metastasis, and pathogens may migrate from one host to another. One may represent a population’s migration history by labeling the vertices of a given phylogeny T with locations such that an edge incident to vertices with distinct locations represents a migration. Additionally, in some biological populations, taxa from distinct lineages may comigrate from one location to another in a single event, a phenomenon known as a comigration. Here, we show that a previous problem statement for inferring migration histories that are parsimonious in terms of migrations and comigrations may lead to temporally inconsistent solutions. To remedy this deficiency, we introduce precise definitions of temporal consistency of comigrations in a phylogeny, leading to three successive problems. First, we formulate the Temporally Consistent Comigrations (TCC) problem to check if a set of comigrations is temporally consistent and provide a linear time algorithm for solving this problem. Second, we formulate the Parsimonious Consistent Comigration (PCC) problem, which aims to find comigrations given a location labeling of a phylogeny. We show that PCC is NP-hard. Third, we formulate the Parsimonious Consistent Comigration History (PCCH) problem, which infers the migration history given a phylogeny and locations of its extant vertices only. We show that PCCH is NP-hard as well. On the positive side, we propose integer linear programming models to solve the PCC and PCCH problems. We apply our approach to real and simulated data. 
    more » « less