Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Highly selective C−H functionalization remains an ongoing challenge in organic synthetic methodologies. Biocatalysts are robust tools for achieving these difficult chemical transformations. Biocatalyst engineering has often required directed evolution or structure‐based rational design campaigns to improve their activities. In recent years, machine learning has been integrated into these workflows to improve the discovery of beneficial enzyme variants. In this work, we combine a structure‐based self‐supervised machine learning framework, MutComputeX, with classical molecular dynamics simulations to down select mutations for rational design of a non‐heme iron‐dependent lysine dioxygenase, LDO. This approach consistently resulted in functional LDO mutants and circumvents the need for extensive study of mutational activity before‐hand. Our rationally designed single mutants purified with up to 2‐fold higher expression yields than WT and displayed higher total turnover numbers (TTN). Combining five such single mutations into a pentamutant variant, LPNYI LDO, leads to a 40 % improvement in the TTN (218±3) as compared to WT LDO (TTN=160±2). Overall, this work offers a low‐barrier approach for those seeking to synergize machine learning algorithms with pre‐existing protein engineering strategies.more » « lessFree, publicly-accessible full text available December 16, 2025
An official website of the United States government
