skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2046816

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this paper, we study the problem of learning the weights of a deep convolutional neural network. We consider a network where convolutions are carried out over non-overlapping patches. We develop an algorithm for simultaneously learning all the kernels from the training data. Our approach dubbed deep tensor decomposition (DeepTD) is based on a low-rank tensor decomposition. We theoretically investigate DeepTD under a realizable model for the training data where the inputs are chosen i.i.d. from a Gaussian distribution and the labels are generated according to planted convolutional kernels. We show that DeepTD is sample efficient and provably works as soon as the sample size exceeds the total number of convolutional weights in the network.

     
    more » « less
  2. Free, publicly-accessible full text available May 1, 2025
  3. Free, publicly-accessible full text available February 25, 2025
  4. Free, publicly-accessible full text available February 25, 2025
  5. Free, publicly-accessible full text available December 1, 2024
  6. Free, publicly-accessible full text available December 1, 2024