Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fishman, Lila (Ed.)Sex-ratio meiotic drivers are selfish genes or gene complexes that bias the transmission of sex chromosomes resulting in skewed sex ratios. Existing theoretical models have suggested the maintenance of a four-chromosome equilibrium (with driving and standard X and suppressing and susceptible Y) in a cyclic dynamic, but studies of natural populations have failed to capture this pattern. Although there are several plausible explanations for this lack of cycling, interference from autosomal suppressors has not been studied using a theoretical population genetic framework even though autosomal suppressors and Y-linked suppressors coexist in natural populations of some species. In this study, we use a simulation-based approach to investigate the influence of autosomal suppressors on the cycling of sex chromosomes. Our findings demonstrate that the presence of an autosomal suppressor can hinder the invasion of a Y-linked suppressor under some parameter space, thereby impeding the cyclic dynamics, or even the invasion of Y-linked suppression. Even when a Y-linked suppressor invades, the presence of an autosomal suppressor can prevent cycling. Our study demonstrates the potential role of autosomal suppressors in preventing sex chromosome cycling and provides insights into the conditions and consequences of maintaining both Y-linked and autosomal suppressors.more » « less
-
Modeling the evolution of Schizosaccharomyces pombe populations with multiple killer meiotic driversMcIntyre, L (Ed.)Meiotic drivers are selfish genetic loci that can be transmitted to more than half of the viable gametes produced by a heterozygote. This biased transmission gives meiotic drivers an evolutionary advantage that can allow them to spread over generations until all members of a population carry the driver. This evolutionary power can also be exploited to modify natural populations using synthetic drivers known as “gene drives.” Recently, it has become clear that natural drivers can spread within genomes to birth multicopy gene families. To understand intragenomic spread of drivers, we model the evolution of 2 or more distinct meiotic drivers in a population. We employ the wtf killer meiotic drivers from Schizosaccharomyces pombe, which are multicopy in all sequenced isolates, as models. We find that a duplicate wtf driver identical to the parent gene can spread in a population unless, or until, the original driver is fixed. When the duplicate driver diverges to be distinct from the parent gene, we find that both drivers spread to fixation under most conditions, but both drivers can be lost under some conditions. Finally, we show that stronger drivers make weaker drivers go extinct in most, but not all, polymorphic populations with absolutely linked drivers. These results reveal the strong potential for natural meiotic drive loci to duplicate and diverge within genomes. Our findings also highlight duplication potential as a factor to consider in the design of synthetic gene drives.more » « less
-
Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.more » « less
An official website of the United States government
