Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Benjamin, Paaßen ; Carrie, Demmans Epp (Ed.)Knowledge Tracing (KT) focuses on quantifying student knowledge according to the student's past performance. While KT models focus on modeling student knowledge, they miss the behavioral aspect of learning, such as the types of learning materials that the students choose to learn from. This is mainly because traditional knowledge tracing (KT) models only consider assessed activities, like solving questions. Recently, there has been a growing interest in multi-type KT which considers both assessed and non-assessed activities (like video lectures). Since multi-type KT models include different learning material types, they present a new opportunity to investigate student behavior, as in the choice of the learning material type, along with student knowledge. We argue that student knowledge can affect their behavior, and student interest in learning materials may affect their knowledge. In this paper, we model the relationship between students' knowledge states and their choice of learning activities. To this end, we propose Pareto-TAMKOT which frames the simultaneous learning of student knowledge and behavior as a multi-task learning problem. It employs a transition-aware multi-activity KT method for two objectives: modeling student knowledge and student behavior. Pareto-TAMKOT uses the Pareto Multi-task learning algorithm (Pareto MTL) to solve this multi-objective optimization problem. We evaluate Pareto-TAMKOT on one real-world dataset, demonstrating the benefit of approaching student knowledge and behavior modeling as a multi-task learning problem.more » « lessFree, publicly-accessible full text available July 17, 2025
-
Free, publicly-accessible full text available June 27, 2025
-
Marked temporal point process models (MTPPs) aim to model event sequences and event markers (associated features) in continuous time. These models have been applied to various application domains where capturing event dynamics in continuous time is beneficial, such as education systems, social networks, and recommender systems. However, current MTPPs suffer from two major limitations, i.e., inefficient representation of event dynamic’s influence on marker distribution and losing fine-grained representation of historical marker distributions in the modeling. Motivated by these limitations, we propose a novel model called
M arked Po int Processes withM emory-E nhancedN eural Net works (MoMENt) that can capture the bidirectional interrelations between markers and event dynamics while providing fine-grained marker representations. Specifically, MoMENt is constructed of two concurrent networks: Recurrent Activity Updater (RAU) to capture model event dynamics and Memory-Enhanced Marker Updater (MEMU) to represent markers. Both RAU and MEMU components are designed to update each other at every step to model the bidirectional influence of markers and event dynamics. To obtain a fine-grained representation of maker distributions, MEMU is devised with external memories that model detailed marker-level features with latent component vectors. Our extensive experiments on six real-world user interaction datasets demonstrate that MoMENt can accurately represent users’ activity dynamics, boosting time, type, and marker predictions, as well as recommendation performance up to 76.5%, 65.6%, 77.2%, and 57.7%, respectively, compared to baseline approaches. Furthermore, our case studies show the effectiveness of MoMENt in providing meaningful and fine-grained interpretations of user-system relations over time, e.g., how user choices influence their future preferences in the recommendation domain.Free, publicly-accessible full text available April 27, 2025 -
Accurate modeling of student knowledge is essential for large-scale online learning systems that are increasingly used for student training. Knowledge tracing aims to model student knowledge state given the student's sequence of learning activities. Modern Knowledge tracing (KT) is usually formulated as a supervised sequence learning problem to predict students' future practice performance according to their past observed practice scores by summarizing student knowledge state as a set of evolving hidden variables. Because of this formulation, many current KT solutions are not fit for modeling student learning from non-assessed learning activities with no explicit feedback or score observation (e.g., watching video lectures that are not graded). Additionally, these models cannot explicitly represent the dynamics of knowledge transfer among different learning activities, particularly between the assessed (e.g., quizzes) and non-assessed (e.g., video lectures) learning activities. In this paper, we propose Transition-Aware Multi-activity Knowledge Tracing (TAMKOT), which models knowledge transfer between learning materials, in addition to student knowledge, when students transition between and within assessed and non-assessed learning materials. TAMKOT is formulated as a deep recurrent multi-activity learning model that explicitly learns knowledge transfer by activating and learning a set of knowledge transfer matrices, one for each transition type between student activities. Accordingly, our model allows for representing each material type in a different yet transferrable latent space while maintaining student knowledge in a shared space. We evaluate our model on three real-world publicly available datasets and demonstrate TAMKOT's capability in predicting student performance and modeling knowledge transfer.more » « less
-
Knowledge tracing (KT), or modeling student knowledge state given their past activity sequence, is one of the essential tasks in online education systems. Research has demonstrated that students benefit from both assessed (e.g., solving problems, which can be graded) and non-assessed learning activities (e.g., watching video lectures, which cannot be graded), and thus, modeling student knowledge from multiple types of activities with knowledge transfer between them is crucial. However, current approaches to multi-activity knowledge tracing cannot capture coarse-grained between-type associations and are primarily evaluated by predicting student performance on upcoming assessed activities (labeled data). Therefore, they are inadequate in incorporating signals from non-assessed activities (unlabeled data). We propose Graph-enhanced Multi-activity Knowledge Tracing (GMKT) that addresses these challenges by jointly learning a fine-grained recurrent memory-augmented student knowledge model and a coarse-grained graph neural network. In GMKT, we formulate multi-activity knowledge tracing as a semi-supervised sequence learning problem and optimize for accurate student performance and activity type at each time step. We demonstrate the effectiveness of our proposed model by experimenting on three real-world datasets.more » « less
-
Personalized learning and educational recommender systems are integral parts of modern online education systems. In this context, the problem of recommending the best learning material to students is a perfect example of sequential multi-objective recommendation. Learning material recommenders need to optimize for and balance between multiple goals, such as adapting to student ability, adjusting the learning material difficulty, increasing student knowledge, and serving student interest, at every step of the student learning sequence. However, the obscurity and incompatibility of these objectives pose additional challenges for learning material recommenders. To address these challenges, we propose Proximity-based Educational Recommendation (PEAR), a recommendation framework that suggests a ranked list of problems by approximating and balancing between problem difficulty and student ability. To achieve an accurate approximation of these objectives, PEAR can integrate with any state-of-the-art student and domain knowledge model. As an example of such student and domain knowledge model, we introduce Deep Q-matrix based Knowledge Tracing model (DQKT), and integrate PEAR with it. Rather than static recommendations, this framework dynamically suggests new problems at each step by tracking student knowledge level over time. We use an offline evaluation framework, Robust Evaluation Matrix (REM), to compare PEAR with various baseline recommendation policies under three different student simulators and demonstrate the effectiveness of our proposed model. We experiment with different student trajectory lengths and show that while PEAR can perform better than the baseline policies with fewer data, it is also robust with longer sequence lengths.more » « less