- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Obus, Andrew (3)
-
Srinivasan, Padmavathi (2)
-
Dang, Huy (1)
-
Das, Soumyadip (1)
-
Karagiannis, Kostas (1)
-
Thatte, Vaidehee (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We prove an inequality between the conductor and the discriminant for all hyperelliptic curves defined over discretely valued fields $$K$$ with perfect residue field of characteristic not $$2$$. Specifically, if such a curve is given by $$y^{2} = f(x)$$ with $$f(x) \in \mathcal{O}_{K}[x]$$, and if $$\mathcal{X}$$ is its minimal regular model over $$\mathcal{O}_{K}$$, then the negative of the Artin conductor of $$\mathcal{X}$$ (and thus also the number of irreducible components of the special fiber of $$\mathcal{X}$$) is bounded above by the valuation of $$\operatorname{disc}(f)$$. There are no restrictions on genus of the curve or on the ramification of the splitting field of $$f$$. This generalizes earlier work of Ogg, Saito, Liu, and the second author.more » « less
-
Obus, Andrew; Srinivasan, Padmavathi (, Research in Number Theory)
-
Dang, Huy; Das, Soumyadip; Karagiannis, Kostas; Obus, Andrew; Thatte, Vaidehee (, Journal de théorie des nombres de Bordeaux)
An official website of the United States government
