skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2047827

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent privacy laws have strengthened data subjects’ right to access personal data collected by companies. Prior work has found that data exports companies provide consumers in response to Data Subject Access Requests (DSARs) can be overwhelming and hard to understand. To identify directions for improving the user experience of data exports, we conducted an online study in which 33 participants explored their own data from Amazon, Facebook, Google, Spotify, or Uber. Participants articulated questions they hoped to answer using the exports. They also annotated parts of the data they found confusing, creepy, interesting, or surprising. While participants hoped to learn either about their own usage of the platform or how the company collects and uses their personal data, these questions were often left unanswered. Participants’ annotations documented their excitement at finding data records that triggered nostalgia, but also shock about the privacy implications of other data they saw. Having examined their data, many participants hoped to request the company erase some, but not all, of the data. We discuss opportunities for future transparency-enhancing tools and enhanced laws. 
    more » « less
  2. Internet companies routinely follow users around the web, building profiles for ad targeting based on inferred attributes. Prior work has shown that these practices, generally, are creepy—but what does that mean? To help answer this question, we substantially revised an open-source browser extension built to observe a user's browsing behavior and present them with a tracker's perspective of that behavior. Our updated extension models possible interest inferences far more accurately, integrates data scraped from the user's Google ad dashboard, and summarizes ads the user was shown. Most critically, it introduces ten novel visualizations that show implications of the collected data, both the mundane (e.g., total number of ads you've been served) and the provocative (e.g., your interest in reproductive health, a potentially sensitive topic). We use our extension as a design probe in a week-long field study with 200 participants. We find that users do perceive online tracking as creepy—but that the meaning of creepiness is far from universal. Participants felt differently about creepiness even when their data presented similar visualizations, and even when responding to the most potentially provocative visualizations—in no case did more than 66% of participants agree that any one visualization was creepy. 
    more » « less
  3. Current algorithmic fairness tools focus on auditing completed models, neglecting the potential downstream impacts of iterative decisions about cleaning data and training machine learning models. In response, we developed Retrograde, a JupyterLab environment extension for Python that generates real-time, contextual notifications for data scientists about decisions they are making regarding protected classes, proxy variables, missing data, and demographic differences in model performance. Our novel framework uses automated code analysis to trace data provenance in JupyterLab, enabling these notifications. In a between-subjects online experiment, 51 data scientists constructed loan-decision models with Retrograde providing notifications continuously throughout the process, only at the end, or never. Retrograde’s notifications successfully nudged participants to account for missing data, avoid using protected classes as predictors, minimize demographic differences in model performance, and exhibit healthy skepticism about their models. 
    more » « less
  4. Advertising companies and data brokers often provide consumers access to a dashboard summarizing attributes they have collected or inferred about that user. These attributes can be used for targeted advertising. Several studies have examined the accuracy of these collected attributes or users’ reactions to them. However, little is known about how these dashboards, and the associated attributes, change over time. Here, we report data from a week-long, longitudinal study (𝑛=158) in which participants used a browser extension automatically capturing data from one dashboard, Google Ads Settings, after every fifth website the participant visited. The results show that Ads Settings is frequently updated, includes many attributes unique to only a single participant in our sample, and is approximately 90% accurate when assigning age and gender. We also find evidence that Ads Settings attributes may dynamically impact browsing behavior and may be filtered to remove sensitive interests. 
    more » « less
  5. To counteract the ads and third-party tracking ubiquitous on the web, users turn to blocking tools---ad-blocking and tracking-protection browser extensions and built-in features. Unfortunately, blocking tools can cause non-ad, non-tracking elements of a website to degrade or fail, a phenomenon termed breakage. Examples include missing images, non-functional buttons, and pages failing to load. While the literature frequently discusses breakage, prior work has not systematically mapped and disambiguated the spectrum of user experiences subsumed under "breakage," nor sought to understand how users experience, prioritize, and attempt to fix breakage. We fill these gaps. First, through qualitative analysis of 18,932 extension-store reviews and GitHub issue reports for ten popular blocking tools, we developed novel taxonomies of 38 specific types of breakage and 15 associated mitigation strategies. To understand subjective experiences of breakage, we then conducted a 95-participant survey. Nearly all participants had experienced various types of breakage, and they employed an array of strategies of variable effectiveness in response to specific types of breakage in specific contexts. Unfortunately, participants rarely notified anyone who could fix the root causes. We discuss how our taxonomies and results can improve the comprehensiveness and prioritization of ongoing attempts to automatically detect and fix breakage. 
    more » « less
  6. To enable targeted ads, companies profile Internet users, automatically inferring potential interests and demographics. While current profiling centers on users' web browsing data, smartphones and other devices with rich sensing capabilities portend profiling techniques that draw on methods from ubiquitous computing. Unfortunately, even existing profiling and ad-targeting practices remain opaque to users, engendering distrust, resignation, and privacy concerns. We hypothesized that making profiling visible at the time and place it occurs might help users better understand and engage with automatically constructed profiles. To this end, we built a technology probe that surfaces the incremental construction of user profiles from both web browsing and activities in the physical world. The probe explores transparency and control of profile construction in real time. We conducted a two-week field deployment of this probe with 25 participants. We found that increasing the visibility of profiling helped participants anticipate how certain actions can trigger specific ads. Participants' desired engagement with their profile differed in part based on their overall attitudes toward ads. Furthermore, participants expected algorithms would automatically determine when an inference was inaccurate, no longer relevant, or off-limits. Current techniques typically do not do this. Overall, our findings suggest that leveraging opportunistic moments within pervasive computing to engage users with their own inferred profiles can create more trustworthy and positive experiences with targeted ads. 
    more » « less
  7. Data privacy regulations like GDPR and CCPA define a right of access empowering consumers to view the data companies store about them. Companies satisfy these requirements in part via data downloads, or downloadable archives containing this information. Data downloads vary in format, organization, comprehensiveness, and content. It is unknown, however, whether current data downloads actually achieve the transparency goals embodied by the right of access. In this paper, we report on the first exploration of the design of data downloads. Through 12 focus groups involving 42 participants, we gathered reactions to six companies’ data downloads. Using co-design techniques, we solicited ideas for future data download designs, formats, and tools. Most participants indicated that current offerings need improvement to be useful, emphasizing the need for better filtration, visualization, and summarization to help them hone in on key information. 
    more » « less