skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2047940

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Arecaceae (palms) are an important resource for indigenous communities as well as fauna populations across Amazonia. Understanding the spatial patterns and the environmental factors that determine the habitats of palms is of considerable interest to rainforest ecologists. Here, we utilize remotely sensed imagery in conjunction with topography and soil attribute data and employ a generalized cluster identification algorithm, Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), to study the underlying patterns of palms in two areas of Guyana, South America. The results of the HDBSCAN assessment were cross-validated with several point pattern analysis methods commonly used by ecologists (the quadrat test for complete spatial randomness, Morista Index, Ripley’s L-function, and the pair correlation function). A spatial logistic regression model was generated to understand the multivariate environmental influences driving the placement of cluster and outlier palms. Our results showed that palms are strongly clustered in the areas of interest and that the HDBSCAN’s clustering output correlates well with traditional analytical methods. The environmental factors influencing palm clusters or outliers, as determined by logistic regression, exhibit qualitative similarities to those identified in conventional ground-based palm surveys. These findings are promising for prospective research aiming to integrate remote flora identification techniques with traditional data collection studies. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026