skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2048210

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gelatinous zooplankton are increasingly recognized as key components of pelagic ecosystems, and there have been many recent insights into their ecology and roles in food webs. To examine the trophic ecology of siphonophores (Cnidaria, Hydrozoa), we used bulk (carbon and nitrogen) and compound‐specific (nitrogen) isotope analysis of individual amino acids (CSIA‐AA). We collected samples of 15 siphonophore genera using blue‐water diving, midwater trawls, and remotely operated vehicles in the California Current Ecosystem, from 0 to 3000 m. We examined the basal resources supporting siphonophore nutrition by comparing their isotope values to those of contemporaneously collected sinking and suspended particles (0–500 m). Stable isotope values provided novel insights into siphonophore trophic ecology, indicating considerable niche overlap between calycophoran and physonect siphonophores. However, there were clear relationships between siphonophore trophic positions and phylogeny, and the highest siphonophore trophic positions were restricted to physonects. Bulk and source amino acid nitrogen isotope (δ15N) values of siphonophores and suspended particles all increased significantly with increasing collection depth. In contrast, siphonophore trophic positions did not increase with increasing collection depth. This suggests that microbially reworked, deep, suspended particles with higher δ15N values than surface particles, likely indirectly support deep‐pelagic siphonophores. Siphonophores feed upon a range of prey, from small crustaceans to fishes, and we show that their measured trophic positions reflect this trophic diversity, spanning 1.5 trophic levels (range 2.4–4.0). Further, we demonstrate that CSIA‐AA can elucidate the feeding ecology of gelatinous zooplankton and distinguish between nutritional resources across vertical habitats. These findings improve our understanding of the functional roles of gelatinous zooplankton and energy flow through pelagic food webs. 
    more » « less
  2. Gorokhova, Elena (Ed.)
    Environmental DNA (eDNA) is an increasingly useful method for detecting pelagic animals in the ocean but typically requires large water volumes to sample diverse assemblages. Ship-based pelagic sampling programs that could implement eDNA methods generally have restrictive water budgets. Studies that quantify how eDNA methods perform on low water volumes in the ocean are limited, especially in deep-sea habitats with low animal biomass and poorly described species assemblages. Using 12S rRNA and COI gene primers, we quantified assemblages comprised of micronekton, coastal forage fishes, and zooplankton from low volume eDNA seawater samples (n = 436, 380–1800 mL) collected at depths of 0–2200 m in the southern California Current. We compared diversity in eDNA samples to concurrently collected pelagic trawl samples (n = 27), detecting a higher diversity of vertebrate and invertebrate groups in the eDNA samples. Differences in assemblage composition could be explained by variability in size-selectivity among methods and DNA primer suitability across taxonomic groups. The number of reads and amplicon sequences variants (ASVs) did not vary substantially among shallow (<200 m) and deep samples (>600 m), but the proportion of invertebrate ASVs that could be assigned a species-level identification decreased with sampling depth. Using hierarchical clustering, we resolved horizontal and vertical variability in marine animal assemblages from samples characterized by a relatively low diversity of ecologically important species. Low volume eDNA samples will quantify greater taxonomic diversity as reference libraries, especially for deep-dwelling invertebrate species, continue to expand. 
    more » « less
  3. The water column of the deep ocean is dark, cold, low in food, and under crushing pressures, yet it is full of diverse life. Due to its enormous volume, this mesopelagic zone is home to some of the most abundant animals on the planet. Rather than struggling to survive, they thrive—owing to a broad set of adaptations for feeding, behavior, and physiology. Our understanding of these adaptations is constrained by the tools available for exploring the deep sea, but this tool kit is expanding along with technological advances. Each time we apply a new method to the depths, we gain surprising insights about genetics, ecology, behavior, physiology, diversity, and the dynamics of change. These discoveries show structure within the seemingly uniform habitat, limits to the seemingly inexhaustible resources, and vulnerability in the seemingly impervious environment. To understand midwater ecology, we need to reimagine the rules that govern terrestrial ecosystems. By spending more time at depth—with whatever tools are available—we can fill the knowledge gaps and better link ecology to the environment throughout the water column. 
    more » « less