skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2048315

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tidal fluctuations at the grounding zones of marine‐terminating glaciers induce oscillations in effective pressure at the glacier bed, altering ice‐till coupling and glacial slip. Glaciers slipping atop deformable beds with oscillatory pressure fluctuations can generate a transient porewater pressure feedback within the underlying till, affecting bed coupling and the yield stress of the till. The influence of this transient feedback can range from negligible to dominating glacier slip; however, little is known about the governing mechanics. We used a cryogenic ring shear device to simulate basal slip under oscillating pressure conditions with varying amplitudes to directly measure drag under transient forcing. We find a path dependence (hysteresis) within the shear stress–effective pressure relationship and a greater extent of deformation within till undergoing cyclic loading compared to static loading. Importantly, shear stress is greater when effective pressure is unloading, indicating potential stabilizing feedbacks during rising tides or anomalous fluid pressure spikes. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026
  2. Basal conditions that facilitate fast ice flow are still poorly understood and their parameterization in ice‐flow models results in high uncertainties in ice‐flow and consequent sea‐level rise projections. Direct observations of basal conditions beneath modern ice streams are limited due to the inaccessibility of the bed. One approach to understanding basal conditions is through investigating the basal landscape of ice streams and glaciers, which has been shaped by ice flow over the underlying substrate. Bedform variation together with observations of ice‐flow properties can reveal glaciological and geological conditions present during bedform formation. Here we map the subglacial landscape and identify basal conditions of Rutford Ice Stream (West Antarctica) using different visualization techniques on novel high‐resolution 3D radar data. This novel approach highlights small‐scale features and details of bedforms that would otherwise be invisible in conventional radar grids. Our data reveal bedforms of <300 m in length, surrounded by bedforms of >10 km in length. We correlate variations in bedform dimensions and spacing to different glaciological and geological factors. We find no significant correlation between local (<3 × 3 km) variations in bedform dimensions and variations in ice‐flow speed and (surface or basal) topography. We present a new model of subglacial sediment discharge, which proposes that variations in bedform dimensions are primarily driven by spatial variation in sediment properties and effective pressure. This work highlights the small‐scale spatial variability of basal conditions and its implications for basal slip. This is critical for more reliable parameterization of basal friction of ice streams in numerical models. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026