- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Chang, Yanling (2)
-
Garcia, Alfredo (2)
-
Wang, Zhide (2)
-
Engström, J. (1)
-
Engström, Johan (1)
-
Garcia, A. (1)
-
Garcia, Alfredo A. (1)
-
Markkula, G. (1)
-
Markkula, Gustav (1)
-
McDonald, A. (1)
-
McDonald, Anthony (1)
-
O’Kelly, Matthew (1)
-
Schmeichel, Brandon J. (1)
-
Sun, Lu (1)
-
Supeene I.and O'Kelly M. (1)
-
Supeene, Isaac (1)
-
Wei, R. (1)
-
Wei, Ran (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
Buckley, Christopher L. (1)
-
Cialfi, Daniela (1)
-
Lanillos, Pablo (1)
-
Ramstead, Maxwell (1)
-
Sajid, Noor (1)
-
Shimazaki, Hideaki (1)
-
Verbelen, Tim (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wei, Ran; Garcia, Alfredo; McDonald, Anthony; Markkula, Gustav; Engström, Johan; Supeene, Isaac; O’Kelly, Matthew (, International Workshop on Active Inference)Buckley, Christopher L.; Cialfi, Daniela; Lanillos, Pablo; Ramstead, Maxwell; Sajid, Noor; Shimazaki, Hideaki; Verbelen, Tim (Ed.)
-
Wang, Zhide; Chang, Yanling; Schmeichel, Brandon J.; Garcia, Alfredo A. (, Psychological Review)
-
Wei, R.; Garcia, A.; McDonald, A.; Markkula, G.; Engström, J.; Supeene I.and O'Kelly M. (, International Workshop on Active Inference IWAI 2022)Active inference proposes a unifying principle for perception and action as jointly minimizing the free energy of an agent’s internal world model. In the active inference literature, world models are typically pre-specified or learned through interacting with an environment. This paper explores the possibility of learning world models of active inference agents from recorded demonstrations, with an application to human driving behavior modeling. The results show that the presented method can create models that generate human-like driving behavior but the approach is sensitive to input features.more » « less
An official website of the United States government

Full Text Available