skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2050916

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wire arc additive manufacturing (WAAM) presents a highly promising alternative to conventional subtractive manufacturing methods to produce metallic components, particularly in the aerospace industry, where there is a demand for 17–4 precipitation-hardened (PH) stainless steel structures. This study focuses on investigating the microstructural characteristics, showing microhardness evaluations, and analyzing the tensile properties of the as-printed parts during the 17–4 PH manufacturing process at different locations and directions. The fabrication is carried out using gas metal wire arc additive manufacturing (GM-WAAM). As a result, it was found that the microstructure of the as-deposited part showed a complex configuration consisting of both finely equiaxed and coarsely formed δ-ferrite phases with vermicular and lathy morphologies. These phases were dispersed inside the martensitic matrix, while a small amount of retained austenite was also present. It was observed that the volume fraction of retained austenite (20–5%) and δ-ferrite phases (15.5–2.5%) decreased gradually from the bottom to the top of the as-deposited wall. This reduction in the fractions of these phases resulted in a progressive increase in both hardness (∼37%) and ultimate tensile strength (UTS) along the building direction. This study successfully fabricates a high-strength and ductile 17–4 PH as-printed part using WAAM. The findings provide evidence supporting the feasibility of employing WAAM for producing defect-free, high-strength components on a large scale while maintaining mechanical properties similar or better than wrought alloy 17–4 PH. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  2. Study examines binder deposition methods (bulk vs. selective printing) and sintering atmospheres (vacuum vs. H2) on binder jetted 316 L stainless steel components. The density of the H2-sintered specimens was found to be lower (up to 5%) compared to the vacuum-sintered parts with the final density of 99.7%. Grain size analysis indicated smaller grains in the H2-sintered parts (∼26 μm) compared to vacuum-sintered condition (∼33 μm) in the bound area which could be attributed to the presence of residual pores that impeded grain growth. The H2-sintered specimens exhibited an elongation of 25% and an ultimate tensile strength (UTS) of 460 MPa, whereas the vacuum-sintered parts displayed an elongation of 70% and a UTS of 550 MPa. Fractography analysis using microscopy and micro-computed tomography revealed ductile fracture in the vacuum-sintered samples, while the H2-sintered parts exhibited a combination of brittle and ductile fracture due to remnant pores in the microstructure. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. Binder jetting is a powder bed additive manufacturing process where an object is created by depositing liquid binder onto the surface of powder, selectively binding particles in each layer. The quality of the as-printed parts is influenced not only by process parameters such as layer thickness, binder saturation, print speed, and drying time but also by the location within the build box. This study highlights the location-dependent nature of green density and dimensional accuracy in the as-printed samples, and the observed trends are thoroughly discussed. A conventional powder spreading using a single roller was compared with a double roller to maximize powder packing and bed uniformity prior to binder jetting process. The significance of these observations lies in their impact on densification behavior, shrinkage, and the final geometry of the printed part. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  4. In binder jetting, shrinkage and deformation occur during the sintering step, both of which are affected by the green density of the binder jetted materials. The study innovatively introduces a cost-effective, practical, and in-process monitoring system for visualizing shrinkage and deformation on larger samples than conventionally observed using small-scale specimens in dillatometry equipment. The powder characteristics and binder jet printing process itself influence the initial green density. The comprehensive analysis of powder flowability and packing density, densification behavior, and shrinkage reveals that the consolidated parts using virgin powder (with a green density of 55%) can achieve a relative density above 99.9% with an anisotropic shrinkage in the Z>X>Y direction. In contrast, the used or recycled powder exhibits a lower green density of ∼48%, higher shrinkage rate in all three dimensions, and a decreased degree of anisotropy. Using in-process imaging and experimental data on the grain size attained through optical microscopy and electron backscatered diffraction imaging, the material's shear and bulk viscosities were determined. The formation of delta-ferrite and its impact on densification were discussed in the context of solid-state and supersolidus liquid phase sintering. The model relied on the continuum sintering theory formulated by Skorohod and Olevsky. The strain evolution from the in-situ imaging of sintering process is correlated with porosity based on the used feedstock and applied sintering temperatures. The outcomes of this study offer valuable perspectives on anisotropic sintering mechanisms, bridging the knowledge gap regarding the relationships between structures produced through binder jetting and subsequent sintering of materials. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  5. Evans, Conor L; Chan, Kin Foong (Ed.)
    Pancreatic ductal adenocarcinoma continues to be one of the most lethal cancers today with an abysmal ~8% 5- year survival rate that has remained relatively constant over time. This is thought to be largely due the desmoplastic stroma in the extracellular matrix of these tumor types, inhibiting both the penetration as well as target engagement of treatments. Here we present a methodology for evaluating a monoclonal antibody’s drug target engagement in the presence of an extracellular matrix remodeling drug using paired-agent imaging principles and a subcutaneous tumor mouse model. 
    more » « less
  6. This investigation systematically examines the influence of sintering temperature and aging treatment on the density, microstructure evolution, phase formation, and mechanical properties of a binder jet printed Co-Cr-Mo biomedical alloy. Sintering at 1380 °C for 2 h yielded a near-fully dense part (99.1%) with favorable mechanical properties (up to 325 HV0.1 hardness and up to 693 MPa ultimate tensile strength). The grain size remained unchanged after aging at 800 °C for 24 h (89 ± 21 µm). Aging resulted in increased microhardness and tensile strength due to phase formation (Cr23C6, CrMo, and ε phase), but a significant decrease in ductility. Consequently, the sintered and aged specimen exhibited higher hardness (522 HV0.1), yield strength (641 MPa), and ultimate tensile strength (854 MPa) compared to cast Co-Cr-Mo alloy. Biocompatibility testing with fibroblasts showed a cell viability of 95 ± 2%, indicating that binder jet printing did not affect the biocompatibility of the Co-Cr-Mo alloy. Exemplary printed parts including hip-joint, partial denture, and small-scale knee joint were successfully demonstrated. This study highlights the comparable properties of binder jet Co-Cr-Mo alloy to the cast alloy, affirming its potential for biomedical applications. 
    more » « less
  7. Gas metal arc additive manufacturing (GMA-AM), also known as wire arc additive manufacturing (WAAM), uses an electric arc to melt a wire electrode and deposit objects layer by layer. This study focuses on creating single-pass wall structures using a low-carbon steel wire (ER70S-6) and examining the relationship between pulse frequency and weld geometry, microstructure, and mechanical properties. Microscopic observations showed a typical columnar microstructure with three distinct regions: acicular ferrite, bainite, and allotriomorphic ferrite in the first and last layers, while the mid-region exhibited homogenous polygonal ferrite grains with some pearlite at the grain boundaries. The tensile test results demonstrated a dependency of strength on the applied pulse frequency, with the highest strength (i.e., the ultimate tensile strength of 522 MPa and yield strength of 375 MPa with ductility of ∼52%) achieved in parts processed at a frequency of 100 Hz. Vickers microhardness values revealed uniform hardness in the middle region, consistent with the microstructure observation. Analyzing thermal cycles, coupled with microstructure analysis and continuous cooling transition diagrams, provided insight into how phase and microstructure evolution occurred in low-carbon low-alloy steels processed through PGMA-AM. 
    more » « less
  8. This study investigates the use of hydride-dehydride non-spherical Ti-6Al-4V powders in laser powder bed fusion process and the effects of post-heat-treatments on additively manufactured parts. As-built parts show anisotropic microstructure with α′ martensite and some β phases. Post heat-treated parts exhibit α + β phases, with characteristics dependent on the heat treatment. Heat treatment below β-transus leads to homogenized grain structures with improved corrosion resistance. Electrochemical analysis reveals a very stable corrosion rate due to faster formation of a protective passive layer aided by the fine-structured β phase. X-ray photoelectron spectroscopy examines corrosion behavior and film growth mechanism in saline water. 
    more » « less