Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper is the first comprehensive synthesis of what is currently known about the different natural and anthropogenic fluxes of rhenium (Re) on Earth's surface. We highlight the significant role of anthropogenic mobilization of Re, which is an important consideration in utilizing Re in the context of a biogeochemical tracer or proxy. The largest natural flux of Re derives from chemical weathering and riverine transport to the ocean (dissolved = 62 × 106 g yr−1and particulate = 5 × 106 g yr−1). This review reports a new global average [Re] of 16 ± 2 pmol L−1, or 10 ± 1 pmol L−1for the inferred pre‐anthropogenic concentration without human impact, for rivers draining to the ocean. Human activity via mining (including secondary mobilization), coal combustion, and petroleum combustion mobilize approximately 560 × 106 g yr−1Re, which is more than any natural flux of Re. There are several poorly constrained fluxes of Re that merit further research, including: submarine groundwater discharge, precipitation (terrestrial and oceanic), magma degassing, and hydrothermal activity. The mechanisms and the main host phases responsible for releasing (sources) or sequestrating (sinks) these fluxes remain poorly understood. This study also highlights the use of dissolved [Re] concentrations as a tracer of oxidation of petrogenic organic carbon, and stable Re isotopes as proxies for changes in global redox conditions.more » « less
-
Abstract The Cambro‐Ordovician interval marks a significant transition from extinction to bio‐diversification in deep time. However, the relationship of bio‐transition to volcanism, commonly characterized by mercury (Hg) systematics in sedimentary records, has not been examined. We present the first Cambro‐Ordovician Hg systematics from the Scandinavian Alum Shale. Our results show pronounced Furongian Hg enrichments, coupled with positive Δ199Hg, Δ200Hg, and Δ201Hg values and negative Δ204Hg values that we ascribe to atmospheric Hg transport over long‐distances, while Early Ordovician Hg anomalies, characterized by near‐zero mass‐independent isotope values, indicative of submarine source. Our findings are supported by two new proxies: molybdenum‐Hg and vanadium‐δ202Hg co‐variations, demonstrating Hg systematics were strongly influenced by changes in source and depositional conditions. Constrained by a synchronous atmospheric‐tectonic‐oceanic model, we hypothesize Furongian subaerial volcanism contributed to global extinction and oceanic anoxia, whereas Early Ordovician submarine volcanism concurrent with ocean water upwelling promoted the nascent bio‐diversification.more » « less
An official website of the United States government
