skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 2051242

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The reuse of old genetic variation can promote rapid diversification in evolutionary radiations, but in most cases, the historical events underlying this divergence are not known. For example, ancient hybridization can generate new combinations of alleles that sort into descendant lineages, potentially providing the raw material to initiate divergence. In the Mimulus aurantiacus species complex, there is evidence for widespread gene flow among members of this radiation. In addition, allelic variation in the MaMyb2 gene is responsible for differences in flower color between the closely related ecotypes of subspecies puniceus, contributing to reproductive isolation by pollinators. Previous work suggested that MaMyb2 was introgressed into the red-flowered ecotype of puniceus. However, additional taxa within the radiation have independently evolved red flowers from their yellow-flowered ancestors, raising the possibility that this introgression had a more ancient origin. In this study, we used repeated tests of admixture from whole-genome sequence data across this diverse radiation to demonstrate that there has been both ancient and recurrent hybridization in this group. However, most of the signal of this ancient introgression has been removed due to selection, suggesting that widespread barriers to gene flow are in place between taxa. Yet, a roughly 30 kb region that contains the MaMyb2 gene is currently shared only among the red-flowered taxa. Patterns of admixture, sequence divergence, and extended haplotype homozygosity across this region confirm a history of ancient hybridization, where functional variants have been preserved due to positive selection in red-flowered taxa but lost in their yellow-flowered counterparts. The results of this study reveal that selection against gene flow can reduce genomic signatures of ancient hybridization, but that historical introgression can provide essential genetic variation that facilitates the repeated evolution of phenotypic traits between lineages.

    more » « less
  2. Free, publicly-accessible full text available February 1, 2025
  3. The unique life form of plants promotes the accumulation of somatic mutations that can be passed to offspring in the next generation, because the same meristem cells responsible for vegetative growth also generate gametes for sexual reproduction. However, little is known about the consequences of somatic mutation accumulation for offspring fitness. We evaluate the fitness effects of somatic mutations in Mimulus guttatus by comparing progeny from self-pollinations made within the same flower (autogamy) to progeny from self-pollinations made between stems on the same plant (geitonogamy). The effects of somatic mutations are evident from this comparison, as autogamy leads to homozygosity of a proportion of somatic mutations, but progeny from geitonogamy remain heterozygous for mutations unique to each stem. In two different experiments, we find consistent fitness effects of somatic mutations from individual stems. Surprisingly, several progeny groups from autogamous crosses displayed increases in fitness compared to progeny from geitonogamy crosses, likely indicating that beneficial somatic mutations occurred in some stems. These results support the hypothesis that somatic mutations accumulate during vegetative growth, but they are filtered by different forms of selection that occur throughout development, resulting in the culling of expressed deleterious mutations and the retention of beneficial mutations. 
    more » « less