skip to main content

Search for: All records

Award ID contains: 2051343

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The expansion of many wetland species is a function of both clonal propagation and sexual reproduction. The production of ramets through clonal propagation enables plants to move and occupy space near parent ramets, while seeds produced by sexual reproduction enable species to disperse and colonize open or disturbed sites both near and far from parents. The balance between clonal propagation and sexual reproduction is known to vary with plant density but few studies have focused on reproductive allocation with density changes in response to global climate change.Schoenoplectus americanusis a widespread clonal wetland species in North America and a dominant species in Chesapeake Bay brackish tidal wetlands. Long-term experiments on responses ofS.americanusto global change provided the opportunity to compare the two modes of propagation under different treatments. Seed production increased with increasing shoot density, supporting the hypothesis that factors causing increased clonal reproduction (e.g., higher shoot density) stimulate sexual reproduction and dispersal of genets. The increase in allocation to sexual reproduction was mainly the result of an increase in the number of ramets that flowered and not an increase in the number of seeds per reproductive shoot, or the ratio between the number of flowers produced per inflorescence and the number of flowers that developed into seeds. Seed production increased in response to increasing temperatures and decreased or did not change in response to increased CO2or nitrogen. Results from this comparative study demonstrate that plant responses to global change treatments affect resource allocation and can alter the ability of species to produce seeds.

    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Abstract

    Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha−1in the top 30 cm and 231 ± 134 Mg SOC ha−1in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Summary

    Predicting the fate of coastal marshes requires understanding how plants respond to rapid environmental change. Environmental change can elicit shifts in trait variation attributable to phenotypic plasticity and act as selective agents to shift trait means, resulting in rapid evolution. Comparably, less is known about the potential for responses to reflect the evolution of trait plasticity.

    Here, we assessed the relative magnitude of eco‐evolutionary responses to interacting global change factors using a multifactorial experiment. We exposed replicates of 32Schoenoplectus americanusgenotypes ‘resurrected’ from century‐long, soil‐stored seed banks to ambient or elevated CO2, varying levels of inundation, and the presence of a competing marsh grass, across two sites with different salinities.

    Comparisons of responses to global change factors among age cohorts and across provenances indicated that plasticity has evolved in five of the seven traits measured. Accounting for evolutionary factors (i.e. evolution and sources of heritable variation) in statistical models explained an additional 9–31% of trait variation.

    Our findings indicate that evolutionary factors mediate ecological responses to environmental change. The magnitude of evolutionary change in plant traits over the last century suggests that evolution could play a role in pacing future ecosystem response to environmental change.

    more » « less
  4. Abstract

    Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2, temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2, warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible, opens new avenues for model evaluation and synthesis‐based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub.

    more » « less

    Biological invasions increasingly threaten native biodiversity and ecosystem services. One notable example is the common reed,Phragmites australis, which aggressively invades North American salt marshes. Elevated atmospheric CO2and nitrogen pollution enhance its growth and facilitate invasion becauseP. australisresponds more strongly to these enrichments than do native species. We investigated how modifications to stomatal features contribute to strong photosynthetic responses to CO2and nitrogen enrichment inP. australisby evaluating stomatal shifts under experimental conditions and relating them to maximal stomatal conductance (gwmax) and photosynthetic rates.


    Plants were grownin situin open‐top chambers under ambient and elevated atmospheric CO2(eCO2) and porewater nitrogen (Nenr) in a Chesapeake Bay tidal marsh. We measured light‐saturated carbon assimilation rates (Asat) and stomatal characteristics, from which we calculatedgwmaxand determined whether CO2and Nenraltered the relationship betweengwmaxandAsat.


    eCO2and Nenrenhanced bothgwmaxandAsat, but to differing degrees;gwmaxwas more strongly influenced by Nenrthrough increases in stomatal density whileAsatwas more strongly stimulated by eCO2. There was a positive relationship betweengwmaxandAsatthat was not modified by eCO2or Nenr, individually or in combination.


    Changes in stomatal features co‐occur with previously described responses ofP. australisto eCO2and Nenr. Complementary responses of stomatal length and density to these global change factors may facilitate greater stomatal conductance and carbon gain, contributing to the invasiveness of the introduced lineage.

    more » « less
  6. Abstract

    Coastal marshes are globally important, carbon dense ecosystems simultaneously maintained and threatened by sea‐level rise. Warming temperatures may increase wetland plant productivity and organic matter accumulation, but temperature‐modulated feedbacks between productivity and decomposition make it difficult to assess how wetlands and their thick, organic‐rich soils will respond to climate warming. Here, we actively increased aboveground plant‐surface and belowground soil temperatures in two marsh plant communities, and found that a moderate amount of warming (1.7°C above ambient temperatures) consistently maximized root growth, marsh elevation gain, and belowground carbon accumulation. Marsh elevation loss observed at higher temperatures was associated with increased carbon mineralization and increased microtopographic heterogeneity, a potential early warning signal of marsh drowning. Maximized elevation and belowground carbon accumulation for moderate warming scenarios uniquely suggest linkages between metabolic theory of individuals and landscape‐scale ecosystem resilience and function, but our work indicates nonpermanent benefits as global temperatures continue to rise.

    more » « less
  7. Abstract

    Direct measurement of methane emissions is cost-prohibitive for greenhouse gas offset projects, necessitating the development of alternative accounting methods such as proxies. Salinity is a useful proxy for tidal marsh CH4emissions when comparing across a wide range of salinity regimes but does not adequately explain variation in brackish and freshwater regimes, where variation in emissions is large. We sought to improve upon the salinity proxy in a marsh complex on Deal Island Peninsula, Maryland, USA by comparing emissions from four strata differing in hydrology and plant community composition. Mean CH4chamber-collected emissions measured as mg CH4m−2 h−1ranked asS. alterniflora(1.2 ± 0.3) ≫ High-elevationJ. roemerianus(0.4 ± 0.06) > Low-elevationJ. roemerianus(0.3 ± 0.07) = S. patens(0.1 ± 0.01). Sulfate depletion generally reflected the same pattern with significantly greater depletion in theS. alterniflorastratum (61 ± 4%) than in theS. patensstratum (1 ± 9%) with theJ. roemerianusstrata falling in between. We attribute the high CH4emissions in theS. alterniflorastratum to sulfate depletion likely driven by limited connectivity to tidal waters. Low CH4emissions in theS. patensstratum are attributed to lower water levels, higher levels of ferric iron, and shallow rooting depth. Moderate CH4emissions from theJ. roemerianusstrata were likely due to plant traits that favor CH4oxidation over CH4production. Hydrology and plant community composition have significant potential as proxies to estimate CH4emissions at the site scale.

    more » « less
  8. Abstract

    There has been a steady rise in the use of dormant propagules to study biotic responses to environmental change over time. This is particularly important for organisms that strongly mediate ecosystem processes, as changes in their traits over time can provide a unique snapshot into the structure and function of ecosystems from decades to millennia in the past. Understanding sources of bias and variation is a challenge in the field of resurrection ecology, including those that arise because often‐used measurements like seed germination success are imperfect indicators of propagule viability. Using a Bayesian statistical framework, we evaluated sources of variability and tested for zero‐inflation and overdispersion in data from 13 germination trials of soil‐stored seeds ofSchoenoplectus americanus, an ecosystem engineer in coastal salt marshes in the Chesapeake Bay. We hypothesized that these two model structures align with an ecological understanding of dormancy and revival: zero‐inflation could arise due to failed germinations resulting from inviability or failed attempts to break dormancy, and overdispersion could arise by failing to measure important seed traits. A model that accounted for overdispersion, but not zero‐inflation, was the best fit to our data. Tetrazolium viability tests corroborated this result: most seeds that failed to germinate did so because they were inviable, not because experimental methods failed to break their dormancy. Seed viability declined exponentially with seed age and was mediated by seed provenance and experimental conditions. Our results provide a framework for accounting for and explaining variability when estimating propagule viability from soil‐stored natural archives which is a key aspect of using dormant propagules in eco‐evolutionary studies.

    more » « less
  9. Blagodatksaya, Evgenia (Ed.)
    Roots of salt marsh grasses contribute to soil building but also affect decomposition by releasing bioavailable carbon exudates and oxygen. Disentangling exudate and oxygen effects on decomposition is difficult in the field but essential for marsh carbon models and predicting the impacts of global change disturbances. We tested how pulsed, simulated exudates affect soil metabolism under oxic and anoxic conditions, and whether carbon and oxygen availability facilitate mineralization of existing organic matter (i.e., priming). We conducted a laboratory experiment in flow-through reactors, adding carbon pulses weekly for 84 days and then following starvation under low carbon conditions. Oxygen consumption and sulfide production were inhibited under anoxic and oxic conditions and slowed by 21±10% and 55±8%, respectively, between 1- and 5- days following exudate pulses. Respiration rates immediately following and between pulses increased over time, suggesting that microbes capitalize on and may acclimate to patchy resources. Starvation caused oxygen consumption and sulfide production to fall 28% and 78% in oxic and anoxic treatments. Smaller decreases in oxygen consumption following pulses could suggest greater access to secondary carbon sources and that sulfate reducers were more reliant on exudates. Soil organic carbon was not the likely secondary source because porewater dissolved inorganic carbon 13C values did not change during transit through the reactors, despite a ~26‰ difference between the supplied seawater and marsh soil. Interpretation of oxygen consumption rates is complicated by non-respiratory oxidation of reduced inorganic compounds and possibly significant lithoautotrophy. Exudate pulses elicited rapid and ephemeral respiratory responses, particularly under anoxia, but non-respiratory oxidation of reduced compounds obscured the impact of oxygen availability in our experimental system. Despite this, greater aerobic respiration rates suggest that oxygen availability has more potential to regulate carbon mineralization in coastal wetlands than root exudates. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  10. Free, publicly-accessible full text available June 1, 2024