Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Valley width is largely controlled by lithology and upstream drainage area, but little work has focused on identifying the processes through which valleys widen. Bedrock valleys widen by first laterally eroding bedrock valley walls, followed by the collapse of overlying bedrock material that must then be transported away from the valley wall before the valley can continue widening. We hypothesize that talus piles that cannot be transported by the river protect the valley wall and slow valley widening, while talus piles that are rapidly transported allow for uninterrupted valley widening. We used field measurements from 40 locations in both wide and narrow valleys along the Buffalo River, AR to test this hypothesis. Our data show that wide valleys tend to have fewer talus piles and smaller talus grain sizes, whereas talus in narrow valleys is larger in size and more continuous along valley walls. We calculated potential talus block entrainment at each site location and found that talus blocks in wide valleys are potentially entrained and moved away from valley walls during moderate and large flood events, whereas talus blocks in narrow valleys are very rarely moved. Our results show that the potential transport of talus piles protecting bedrock valley walls from widening is controlled by the block size of collapsed bedrock wall material relative to stream competency. Our results also suggest that persistence versus mobility of collapsed talus piles is an important process in the development of wide bedrock valleys.more » « less
-
We investigate how luminescence signals imprinted on fluvial sediments vary depending on the depositional environment and vary through time in the same river. We collected sediment samples from four geomorphically distinct locations on the modern floodplain and modern point bar on the Buffalo River in northwest Arkansas, USA, in order to determine if different depositional environments are associated with distinct bleaching characteristics in the sediments. Our analysis revealed that all samples from different depositional environments yielded ages consistent with modern deposition. The samples collected from the floodplain and bar head contained a higher proportion of grains with residual doses, indicative of incomplete bleaching during transport, while samples from the mid‐bar and bar tail appeared well bleached. Our results are particularly intriguing for two significant reasons. First, they highlight distinct equivalent dose distributions in different depositional environments. Second, they shed light on an intriguing relationship: despite generally well‐bleached modern floodplain samples, ancient sediments from corresponding terraces displayed equivalent dose (De) distributions that suggest partial bleaching in some cases. This research contributes to the growing body of work that seeks to establish a relationship between luminescence properties and sediment transport processes and offers valuable insight into how luminescence signals vary locally in modern fluvial deposits, which can help guide the interpretation of older fluvial deposits.more » « less
An official website of the United States government
