skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2051565

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The seismic moments observed for low‐frequency earthquakes (LFEs) vary over multiple orders of magnitude, even where the LFEs occur within families of similar events. Although this variability is typically interpreted to record a scale‐limited process at the LFE source, neither the slip per LFE nor the rupture area can be determined from seismological constraints. Here, we examine incrementally developed slickenfibers that have been proposed to record LFEs in exhumed subduction zones. These structures form through repeated, micron‐scale slip events across dilational irregularities in the fault plane, which are punctuated by cementation and sealing in the interstitial space. By statistically analyzing the geometry of inclusion trails delineating slip‐parallel mineral‐growth increments, we constrain the variability in slip per inferred LFE and test end‐member hypotheses regarding the controls on LFE moments. We find that that the slickenfibers exhibit characteristic slip increments, favoring a “slip‐limited” model that requires large variability in LFE rupture areas. 
    more » « less