skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2051691

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The early Paleoproterozoic (ca. 2.5–2.2 Ga) represents a critical juncture in Earth history, marking the inception of an oxygenated atmosphere while bearing witness to potentially multiple widespread and severe glaciations. Deciphering the nature of this glacial epoch and its connection with atmospheric oxygenation has, however, proven difficult, hindered by a reliance on disputed stratigraphic correlations given the paucity of direct radiometric age constraints. Nowhere is this more acute than within the South African Transvaal Supergroup: Here, while the loss of oxygen-sensitive mass-independent sulfur isotope fractionation (S-MIF) has been reported from both the Duitschland and Rooihoogte formations, divided opinion surrounding the time-equivalence of these units has prompted authors to argue for vastly different oxygenation trajectories. Addressing this debate, we present a depositional Re-Os age (2443 ± 33 Ma) from diamictite samples preserved in drillcore of the upper Duitschland Formation. The 100-million-year separation between the Duitschland Formation and its previously presumed equivalent reveals at least two isolated disappearances of S-MIF, requiring that the Great Oxidation Event was dynamic and proceeded via discrete oxygenation episodes whose structure remains incompletely understood. Importantly, our revised framework aligns the lower Duitschland diamictite with the low-latitude glacigenic Makganyene Formation, supporting hypotheses of widespread regional, and potentially global, early Paleoproterozoic glaciation. 
    more » « less
  2. Redox-sensitive elements figure prominently in studies of the evolution of Earth’s surface redox state, including the first major rise in atmospheric O2, the Paleoproterozoic Great Oxidation Event. Most Precambrian rocks endured multistage tectonothermal histories, however, adding ambiguity to interpretation of their chemistry. Here, we apply U-Th-Pb isotope geochronology to the highly oxidized ~2.06 Ga Kuetsjärvi Volcanic Formation, Pechenga Greenstone Belt, Russia, to constrain the age and extent of U oxidation. By contrasting the relative mobility of U and Th using Pb isotopes, we find that complete to near-complete oxidation and removal of U occurred shortly after eruption. We argue that this likely indicates relatively high atmospheric O2, where oxidative weathering and alteration produced a global pulse of U to the oceans. Such a pulse could explain widespread shifts in the U-Th-Pb isotope character of mantle reservoirs at ~2 Ga, including a decrease in the232Th/238U ratio of the mid-ocean ridge basalt source and inception of the high-238U/204Pb (HIMU) source to ocean island basalts, underscoring the connections between the redox character of the Paleoproterozoic surface and deep Earth. Using207Pb-206Pb,238U-206Pb,235U-207Pb, and232Th-208Pb geochronology, ~2.06 Ga oxidative loss of U may be distinguished from reintroduction of U at ~1.8 Ga during regional metamorphism, as well as Pb loss during a Phanerozoic tectonothermal event. Our results therefore establish the complex history of redox-sensitive element behavior in the rocks, highlighting the fact that elemental abundances, by themselves, are unlikely to capture straightforward proxy information in rocks that have seen multistage geologic histories. 
    more » « less
    Free, publicly-accessible full text available September 9, 2026