skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2051801

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Arctic tundra consists of diverse habitats that differ in dominant vegetation, soil moisture regimes, and relative importance of organic vs. inorganic nutrient cycling. The Arctic is also the most rapidly warming global area, with winter warming dominating. This warming is expected to have dramatic effects on tundra carbon and nutrient dynamics. We completed a meta‐analysis of 166 experimental warming study papers to evaluate the hypotheses that warming changes tundra biogeochemical cycles in a habitat‐ and seasonally specific manner and that the carbon (C), nitrogen (N), and phosphorus (P) cycles will be differentially accelerated, leading to decoupling of elemental cycles. We found that nutrient availability and plant leaf stoichiometry responses to experimental warming were variable and overall weak, but that both gross primary productivity and the plant C pool tended to increase with growing season warming. The effects of winter warming on C fluxes did not extend into the growing season. Overall, although warming led to more consistent increases in C fluxes compared to N or P fluxes, evidence for decoupling of biogeochemical cycles is weak and any effect appears limited to heath habitats. However, data on many habitats are too sparse to be able to generalize how warming might decouple biogeochemical cycles, and too few year‐round warming studies exist to ascertain whether the season under which warming occurs alters how ecosystems respond to warming. Coordinated field campaigns are necessary to more robustly document tundra habitat‐specific responses to realistic climate warming scenarios in order to better understand the mechanisms driving this heterogeneity and identify the tundra habitats, communities, and soil pools most susceptible to warming. 
    more » « less
  2. High latitude ecosystems are characterized by cold soils and long winters, with much of their biogeochemistry directly or indirectly controlled by temperature. Climate warming has led to an expansion of shrubby plant communities across tussock tundra, but whether these clear aboveground shifts correspond to changes in the microbial community belowground remains less certain. Using bromodeoxyuridine to label growing cells, we evaluated how total and actively growing bacterial communities varied throughout a year and following 22 years of passive summer warming. We found that changes in total and actively growing bacterial community structures were correlated with edaphic factors and time point sampled, but were unaffected by warming. The aboveground plant community had become more shrub-dominated with warming at this site, and so our results indicate that belowground bacterial communities did not track changes in the aboveground plant community. As such, studies that have used space-for-time methods to predict how increased shrub cover has altered bacterial communities may not be representative of how the microbial community will be affected by in situ changes in the plant community as the Arctic continues to warm. 
    more » « less