skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2052316

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article proposes a predictive modulation scheme for a differential mode resonant switched capacitor rectifier (DMRSCR) to achieve high efficiency and power factor correction (PFC) for wide voltage gain. The modulation scheme ensures extensive zero-voltage switching (ZVS) turn-ON on all the switches under varying sinusoidal input voltage without requiring additional circuits or sensors. Four key control parameters, namely, phase shift ratio, duty cycle ratios, and switching frequency, are controlled for the converter to maintain ZVS turn-ON, PFC, output voltage regulation, and reduced resonant inductor current ripple. The article outlines a detailed DMRSCR model to deduce the dependency of the four control and converter design parameters on the converter operation. Based on the model, a complete converter design process is provided. A DMRSCR prototype rated at 1.1 kW was built using the underscored design methodology to validate the proposed modulation scheme, reaching a peak efficiency of 98.27% 
    more » « less
    Free, publicly-accessible full text available January 1, 2026