skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2052572

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper investigates uniqueness results for perturbed periodic Schrödinger operators on Z d . Specifically, we consider operators of the form H = Δ + V + v , where Δ is the discrete Laplacian, V : Z d R is a periodic potential, and v : Z d C represents a decaying impurity. We establish quantitative conditions under which the equation Δ u + V u + v u = λ u , for λ C , admits only the trivial solution u 0 . Key applications include the absence of embedded eigenvalues for operators with impurities decaying faster than any exponential function and the determination of sharp decay rates for eigenfunctions. Our findings extend previous works by providing precise decay conditions for impurities and analyzing different spectral regimes ofλ. 
    more » « less
    Free, publicly-accessible full text available April 9, 2026
  2. Abstract We discover that the distribution of (frequency and phase) resonances plays a role in determining the spectral type of supercritical quasi-periodic Schrödinger operators. In particular, we disprove the 2nd spectral transition line conjecture of Jitomirskaya in the early 1990s. 
    more » « less
  3. Abstract Let , where , , are pairwise coprime. Let be the discrete Schrödinger operator, where Δ is the discrete Laplacian on and the potential is Γ‐periodic. We prove three rigidity theorems for discrete periodic Schrödinger operators in any dimension :If at some energy level, Fermi varieties of two real‐valued Γ‐periodic potentialsVandYare the same (this feature is referred to asFermi isospectralityofVandY), andYis a separable function, thenVis separable;If two complex‐valued Γ‐periodic potentialsVandYare Fermi isospectral and both and are separable functions, then, up to a constant, lower dimensional decompositions and are Floquet isospectral, ;If a real‐valued Γ‐potentialVand the zero potential are Fermi isospectral, thenVis zero.In particular, all conclusions in (1), (2) and (3) hold if we replace the assumption “Fermi isospectrality” with a stronger assumption “Floquet isospectrality”. 
    more » « less
  4. Free, publicly-accessible full text available March 31, 2026
  5. Free, publicly-accessible full text available November 1, 2025
  6. Let Γ=q1Z⊕q2Z⊕⋯⊕qdZ, with qj∈Z+ for each j ∈ {1, …, d}, and denote by Δ the discrete Laplacian on ℓ2Zd. Using Macaulay2, we first numerically find complex-valued Γ-periodic potentials V:Zd→C such that the operators Δ + V and Δ are Floquet isospectral. We then use combinatorial methods to validate these numerical solutions. 
    more » « less