Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We prove that the Tate conjecture for divisors is “generically true” for \operatorname{mod}preductions of complex projective varieties with h^{2,0}=1, under a mild assumption on moduli.By refining this general result, we establish a new case of the BSD conjecture over global function fields, and the Tate conjecture for a class of general type surfaces of geometric genus 1.more » « lessFree, publicly-accessible full text available July 10, 2026
-
Abstract Using the algebraic criterion proved by Bandiera, Manetti and Meazzini, we show the formality conjecture for universally gluable objects with linearly reductive automorphism groups in the bounded derived category of a K3 surface. As an application, we prove the formality conjecture for polystable objects in the Kuznetsov components of Gushel–Mukai threefolds and quartic double solids.more » « less
-
Abstract We prove a general criterion that guarantees that an admissible subcategory of the derived category of an abelian category is equivalent to the bounded derived category of the heart of a bounded t‐structure. As a consequence, we show that has a strongly unique dg enhancement, applying the recent results of Canonaco, Neeman, and Stellari. We apply this criterion to the Kuznetsov component when is a cubic fourfold, a GM variety, or a quartic double solid. In particular, we obtain that these Kuznetsov components have strongly unique dg enhancement and that exact equivalences of the form are of Fourier–Mukai type when , belong to these classes of varieties, as predicted by a conjecture of Kuznetsov.more » « less
-
Abstract We prove that two Enriques surfaces defined over an algebraically closed field of characteristic different from 2 are isomorphic if their Kuznetsov components are equivalent. This improves and completes our previous result joint with Nuer where the same statement is proved for generic Enriques surfaces.more » « less
-
Abstract We prove that two general Enriques surfaces defined over an algebraically closed field of characteristic different from 2 are isomorphic if their Kuznetsov components are equivalent. We apply the same techniques to give a new simple proof of a conjecture by Ingalls and Kuznetsov relating the derived categories of the blow-up of general Artin–Mumford quartic double solids and of the associated Enriques surfaces.more » « less
An official website of the United States government

Full Text Available