skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2052696

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A significant amount of research is focused on developing and evaluating large language models for a variety of code synthesis tasks. These include synthesizing code from natural language, synthesizing tests from code, and synthesizing explanations of code. In contrast, the behavior of instructional code editing with LLMs is understudied. These are tasks in which the model is provided a block of code and an instruction to modify the code. The editing instruction may ask for a feature to be added or removed, describe a bug and ask for a fix, or ask for a different kind of solution. We introduce a carefully crafted benchmark of code editing tasks and use it to evaluate several cutting edge LLMs. Our evaluation exposes a significant gap between the capabilities of state-of-the-art open and closed models. For example, even GPT-3.5-Turbo is better than the best open model at code editing tasks. We also introduce a new, carefully curated, permissively licensed training dataset of code editing tasks coupled with natural language instructions. Using this training dataset, we show that we can fine-tune open Code LLMs to significantly improve their code editing capabilities, closing the gap between open and closed models. All code, data, and models are available at https://github.com/nuprl/CanItEdit. 
    more » « less
  2. Michael Pradel (Ed.)
    Large language models have demonstrated the ability to generate both natural language and programming language text. Although contemporary code generation models are trained on corpora with several programming languages, they are tested using benchmarks that are typically monolingual. The most widely used code generation benchmarks only target Python, so there is little quantitative evidence of how code generation models perform on other programming languages. We propose MultiPL-E, a system for translating unit test-driven code generation benchmarks to new languages. We create the first massively multilingual code generation benchmark by using MultiPL-E to translate two popular Python code generation benchmarks to 18 additional programming languages. We use MultiPL-E to extend the HumanEval benchmark and MBPP benchmark to 18 languages that encompass a range of programming paradigms and popularity. Using these new parallel benchmarks, we evaluate the multi-language performance of three state-of-the-art code generation models: Codex, CodeGen and InCoder. We find that Codex matches or even exceeds its performance on Python for several other languages. The range of programming languages represented in MultiPL-E allow us to explore the impact of language frequency and language features on model performance. Finally, the MultiPL-E approach of compiling code generation benchmarks to new programming languages is both scalable and extensible, making it straightforward to evaluate new models, benchmarks, and languages. 
    more » « less
  3. Recent trends towards large machine learning models require both training and inference tasks to be distributed. Considering the huge cost of training these models, it is imperative to unlock optimizations in computation and communication to obtain best performance. However, the current logical separation between computation and communication kernels in machine learning frameworks misses optimization opportunities across this barrier. Breaking this abstraction can provide many optimizations to improve the performance of distributed workloads. However, manually applying these optimizations requires modifying the underlying computation and communication libraries for each scenario, which is both time consuming and error-prone. Therefore, we present CoCoNet, which contains (i) a domain specific language to express a distributed machine learning program in the form of computation and communication operations, (ii) a set of semantics preserving transformations to optimize the program, and (iii) a compiler to generate jointly optimized communication and computation GPU kernels. Providing both computation and communication as first class constructs allows users to work on a high-level abstraction and apply powerful optimizations, such as fusion or overlapping of communication and computation. CoCoNet enabled us to optimize data-, model- and pipeline-parallel workloads in large language models with only a few lines of code. Our experiments show that CoCoNet significantly outperforms state-of-the-art distributed machine learning implementations. 
    more » « less
  4. null (Ed.)