Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper focuses on dynamics of systems of particles that allow interactions beyond binary, and their behavior as the number of particles goes to infinity. More precisely, the paper provides the first rigorous derivation of a binary-ternary Boltzmann equation describing the kinetic properties of a gas consisting of hard spheres, where particles undergo either binary or ternary instantaneous interactions, while preserving momentum and energy. An important challenge we overcome in deriving this equation is related to providing a mathematical framework that allows us to detect both binary and ternary interactions. Furthermore, this paper introduces new algebraic and geometric techniques in order to eventually decouple binary and ternary interactions and understand the way they could succeed one another in time. We expect that this paper can serve as a guideline for deriving a generalized Boltzmann equation that incorporates higher-order interactions among particles.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is ofLie–Poisson type. In parallel, it is classical that the Vlasov equation is amean-field limitfor a pairwise interacting Newtonian system. Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation, both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this work as a classical counterpart to [MNP+20], which provided a rigorous derivation of the Hamiltonian structure of the cubic nonlinear Schrödinger equation from the many-body problem for interacting bosons in a certain infinite particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation.more » « less
-
Free, publicly-accessible full text available June 3, 2026
-
Free, publicly-accessible full text available November 1, 2025
-
In this paper we show global well-posedness near vacuum for the binary–ternary Boltzmann equation. The binary–ternary Boltzmann equation provides a correction term to the classical Boltzmann equation, taking into account both binary and ternary interactions of particles, and may serve as a more accurate description model for denser gases in non-equilibrium. Well-posedness of the classical Boltzmann equation and, independently, the purely ternary Boltzmann equation follow as special cases. To prove global well-posedness, we use a Kaniel–Shinbrot iteration and related work to approximate the solution of the non-linear equation by monotone sequences of super- solutions and subsolutions. This analysis required establishing new convolution-type estimates to control the contribution of the ternary collisional operator to the model. We show that the ternary operator allows consideration of softer potentials than the one binary operator, and consequently our solution to the ternary correction of the Boltzmann equation preserves all the properties of the binary interactions solution. These results are novel for collisional operators of monoatomic gases with either hard or soft potentials that model both binary and ternary interactions.more » « less
An official website of the United States government
