Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Earth's drainage networks encode clues that can be used to decipher geologic and geomorphic history. Dendritic drainage patterns, the most common, typically form on approximately homogeneous bedrock. Variations in rock properties or lithologic structure can disrupt dendritic patterns and form, e.g., trellis or rectangular networks. Although textbooks include such lithological–drainage links, the mechanisms driving drainage reorganization via lithologic variability remain poorly understood. To cast light on this mystery, we study drainage patterns in post-glacial landscapes of the Upper Mississippi River Valley (UMRV). Pleistocene glaciers deposited till across parts of this region, burying a landscape of fluvially dissected sedimentary rock whose buried valley network differs from modern-day drainage patterns. As the current river network erodes and exhumes the bedrock, it comes to a geomorphic "decision point": Does it reorganize to recreate the paleodrainage network, or does it maintain its new drainage pattern? To understand this decision-making, we conducted idealized landscape evolution modeling experiments. Modeled landscapes that reintegrated more of the paleodrainage network exhibited higher tortuosity, measured by dividing the real flowpath length by shortest path-length to the outlet, and obtuse tributary-junction angles. We apply this metric to two adjacent landscape types in the UMRV: (1) never glaciated (Driftless Area, DA) and (2) formerly till-mantled (Driftless-style Area, DSA), and measure the basin-averaged tortuosity for sub-basins draining streams of order 1 through 7. Across the UMRV, tortuosity increases as the maximum stream order of the sub-basin increases. For each order, tortuosity is statistically higher in areas that had been previously buried and re-exhumed (DSA) than the DA, indicating that the rivers in the DSA have reintegrated the paleodrainage network since deglaciation. For the 1st and 2nd order sub-basins, the mean basin-averaged tortuosity in the DSA is ~1-2% higher than the DA (p-value < 0.01) and ~10-14% higher (p-value < 0.01) in the 6th and 7th order sub-basins. Our analysis suggests that a drainage-based metric, tortuosity, can identify landscapes where lithological heterogeneity or structure plays a dominant role in drainage organization.more » « less
-
For landscapes to achieve a topographic steady state, they require steady tectonic uplift and climate, and a bedrock that is uniformly erodible in the vertical direction. Basic landscape evolution models predict that incising drainage networks will eventually reach a static geometric equilibrium – that is, the map-view channel pattern will remain constant. In contrast, natural rivers typically incise through heterogeneous bedrock, which can force reorganization of the drainage structure. To investigate how lithological variability can force landscape reorganization, we draw inspiration from formerly glaciated portions of the upper Mississippi Valley. In this region, depth-to-bedrock maps reveal buried dendritic river networks dissecting paleozoic sedimentary rock. During the Pleistocene, ice advance buried the bedrock topography with glacial till, resurfacing the landscape and resetting the landscape evolution clock. As newly formed drainage networks develop and incise into the till-covered surface, they exhume the buried bedrock topography. This then leads to a geomorphic "decision point": Will the rivers follow the course of the bedrock paleodrainage network? Or will they maintain their new pattern? Using a numerical landscape evolution model, we find that two parameters determine this decision: (1) the contrast between the rock erodibility of the glacial till (more erodible) and of the buried sedimentary rock (less erodible) and (2) the orientation of the surface drainage network with respect to the buried network. We find that as the erodibility contrast increases, the drainage pattern is more likely to reorganize to follow the buried bedrock valleys. Additionally, as the alignment of the two networks increases, the surface drainage network also tends to restructure itself to follow the paleodrainage network. However, when there is less contrast and/or alignment, the surface drainage pattern becomes superimposed on the bedrock topography, with streams cutting across buried bedrock ridges. Our results agree with field studies demonstrating that variability in erodibility exerts a first-order control on landscape evolution and morphology. Our findings can provide insight into how lithologic variation affects surface processes, drives drainage reorganization, and creates geopatterns.more » « less
An official website of the United States government

Full Text Available