skip to main content

Search for: All records

Award ID contains: 2053117

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. First measurements of internal quantum-state distributions for nitric oxide (NO) evaporating from liquid benzyl alcohol are presented over a broad range of temperatures, performed by liquid-microjet techniques in an essentially collision-free regime, with rotational/spin–orbit populations in the 2 Π 1/2,3/2 manifolds measured by laser-induced fluorescence. The observed rotational distributions exhibit highly linear (i.e., thermal) Boltzmann plots but notably reflect rotational temperatures ( T rot ) as much as 30 K lower than the liquid temperature ( T jet ). A comparable lack of equilibrium behavior is also noted in the electronic degrees of freedom but with populations corresponding to spin–orbit temperatures ( T SO ) consistently higher than T rot by ∼15 K. These results unambiguously demonstrate evaporation into a non-equilibrium distribution, which, by detailed-balance considerations, predict quantum-state-dependent sticking coefficients for incident collisions of NO at the gas–liquid interface. Comparison and parallels with previous experimental studies of NO thermal desorption and molecular-beam scattering in other systems are discussed, which suggests the emergence of a self-consistent picture for the non-equilibrium dynamics. 
    more » « less
    Free, publicly-accessible full text available April 14, 2024
  2. Abstract Rapid testing is essential to fighting pandemics such as coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Exhaled human breath contains multiple volatile molecules providing powerful potential for non-invasive diagnosis of diverse medical conditions. We investigated breath detection of SARS-CoV-2 infection using cavity-enhanced direct frequency comb spectroscopy (CE-DFCS), a state-of-the-art laser spectroscopic technique capable of a real-time massive collection of broadband molecular absorption features at ro-vibrational quantum state resolution and at parts-per-trillion volume detection sensitivity. Using a total of 170 individual breath samples (83 positive and 87 negative with SARS-CoV-2 based on reverse transcription polymerase chain reaction tests), we report excellent discrimination capability for SARS-CoV-2 infection with an area under the receiver-operating-characteristics curve of 0.849(4). Our results support the development of CE-DFCS as an alternative, rapid, non-invasive test for COVID-19 and highlight its remarkable potential for optical diagnoses of diverse biological conditions and disease states. 
    more » « less
    Free, publicly-accessible full text available April 5, 2024
  3. Free, publicly-accessible full text available March 23, 2024
  4. Free, publicly-accessible full text available March 21, 2024
  5. Free, publicly-accessible full text available February 1, 2024
  6. Free, publicly-accessible full text available December 1, 2023
  7. First, high-resolution sub-Doppler infrared spectroscopic results for cyclopentyl radical (C 5 H 9 ) are reported on the α-CH stretch fundamental with suppression of spectral congestion achieved by adiabatic cooling to T rot ≈ 19(4) K in a slit jet expansion. Surprisingly, cyclopentyl radical exhibits a rotationally assignable infrared spectrum, despite 3N − 6 = 36 vibrational modes and an upper vibrational state density (ρ ≈ 40–90 #/cm −1 ) in the critical regime (ρ ≈ 100 #/cm −1 ) necessary for onset of intramolecular vibrational relaxation (IVR) dynamics. Such high-resolution data for cyclopentyl radical permit detailed fits to a rigid-rotor asymmetric top Hamiltonian, initial structural information for ground and vibrationally excited states, and opportunities for detailed comparison with theoretical predictions. Specifically, high level ab initio calculations at the coupled-cluster singles, doubles, and perturbative triples (CCSD(T))/ANO0, 1 level are used to calculate an out-of-plane bending potential, which reveals a C 2 symmetry double minimum 1D energy surface over a C 2v transition state. The inversion barrier [V barrier ≈ 3.7(1) kcal/mol] is much larger than the effective moment of inertia for out-of-plane bending, resulting in localization of the cyclopentyl wavefunction near its C 2 symmetry equilibrium geometry and tunneling splittings for the ground state too small (<1 MHz) to be resolved under sub-Doppler slit jet conditions. The persistence of fully resolved high-resolution infrared spectroscopy for such large cyclic polyatomic radicals at high vibrational state densities suggests a “deceleration” of IVR for a cycloalkane ring topology, much as low frequency torsion/methyl rotation degrees of freedom have demonstrated a corresponding “acceleration” of IVR processes in linear hydrocarbons. 
    more » « less