skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2053118

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the biopharmaceutical industry, virus filters are crucial for ensuring the removal of endogenous and adventitious viruses as part of the viral clearance strategy. Although traditionally described as a size-exclusion mechanism, virus retention has a pro-cess-dependent nature where challenging conditions, such as process disruptions, may compromise membrane retention and significantly increase virus filtrate concentrations. The detailed mechanisms underlying this loss of retention are challenging to determine using traditional breakthrough experiments. In this work, single particle tracking and kinetic simulations were employed to connect individual particle behavior to the observed macroscopic losses in virus retention. Our experiments, using fluorescently labeled ΦX174 bacteriophage as a model parvovirus, replicated conditions representative of process disruptions within the Pegasus SV4, a homogeneous polymeric virus filtration membrane. During flow, phage particles retained were trapped within relatively large cavity spaces that had downstream constrictions aligned with the flow direction; the trapped particles were dynamic and exhibited significant intra-cavity motion. Upon flow stoppage, particles escaped from these retention locations rapidly, with approximately 90% of previously trapped particles being remobilized for process dis-ruption time ranging from 2 to 10 minutes, suggesting that local cavity escape had reached saturation at these timescales. Diffusion experiments within the membrane revealed isotropic and Fickian motion, hindered by more than an order of mag-nitude compared to diffusion in unconfined liquid. Despite the reduced mobility within the membrane, the substantial diffusion coefficient of 4.19 ± 0.06 µm²/s indicated that virus particles could travel tortuous but non-retentive pathways through the membrane on length scales equal to or greater than the membrane thickness during a disruption event. A 1D kinetic Monte-Carlo simulation successfully connected single-particle behavior to macroscopically observed virus release, indicating that significant diffusive release into the filtrate can occur even without the resumption of flow. This work provides crucial insights into the retention behavior of homogeneous membranes during periods of disruption, enabling the design of more robust mitigation strategies and filter designs. 
    more » « less
  2. Membrane distillation (MD) can treat high-salinity brine. However, the system’s efficiency is hindered by obstacles, including salt scaling and temperature polarization. When properly implemented, surface patterns can improve the mass and heat transfer in the boundary layer, which leads to higher MD efficiency. In this work, the performance of direct contact membrane distillation (DCMD) using Sharklet-patterned poly (vinylidene fluoride) (PVDF) membranes is investigated. Both non-patterned and patterned PVDF membranes are prepared by lithographically templated thermally induced phase separation (lt-TIPS) process with optimized conditions. Sharklet patterns on the membranes improve the DCMD performance: up to 17 % higher water flux and 35 % increased brine-side heat transfer coefficient. The scaling resistance of the membranes during DCMD is tested by both saturated CaSO4 solution and hypersaline NaCl solutions. Patterned PVDF membranes show an average of 30 % higher water flux and up to 45 % lessened flux decline over time compared with non-patterned membranes when treating high-concentration brines. Post-mortem analysis reveals that Sharklet-patterned membranes display less salt-scaling on surfaces with smaller-sized CaSO4 and NaCl crystals, maintain a relatively cleaner surface, and exhibit better retention of hydrophobicity. 
    more » « less