skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2054129

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We initiate the study of a class of polytopes, which we coinpolypositroids, defined to be those polytopes that are simultaneously generalized permutohedra (or polymatroids) and alcoved polytopes. Whereas positroids are the matroids arising from the totally nonnegative Grassmannian, polypositroids are “positive” polymatroids. We parametrize polypositroids using Coxeter necklaces and balanced graphs, and describe the cone of polypositroids by extremal rays and facet inequalities. We introduce a notion of$$(W,c)$$-polypositroidfor a finite Weyl groupWand a choice of Coxeter elementc. We connect the theory of$$(W,c)$$-polypositroids to cluster algebras of finite type and to generalized associahedra. We discussmembranes, which are certain triangulated 2-dimensional surfaces inside polypositroids. Membranes extend the notion of plabic graphs from positroids to polypositroids. 
    more » « less
  2. Leclerc and Zelevinsky, motivated by the study of quasi-commuting quantum flag minors, introduced the notions of strongly separated and weakly separated collections. These notions are closely related to the theory of cluster algebras, to the combinatorics of the double Bruhat cells, and to the totally positive Grassmannian. A key feature, called the purity phenomenon, is that every maximal by inclusion strongly (resp., weakly) separated collection of subsets in $[n]$ has the same cardinality. In this paper, we extend these notions and define $$\mathcal{M}$$-separated collections for any oriented matroid $$\mathcal{M}$$. We show that maximal by size $$\mathcal{M}$$-separated collections are in bijection with fine zonotopal tilings (if $$\mathcal{M}$$ is a realizable oriented matroid), or with one-element liftings of $$\mathcal{M}$$ in general position (for an arbitrary oriented matroid). We introduce the class of pure oriented matroids for which the purity phenomenon holds: an oriented matroid $$\mathcal{M}$$ is pure if $$\mathcal{M}$$-separated collections form a pure simplicial complex, i.e., any maximal by inclusion $$\mathcal{M}$$-separated collection is also maximal by size. We pay closer attention to several special classes of oriented matroids: oriented matroids of rank $$3$$, graphical oriented matroids, and uniform oriented matroids. We classify pure oriented matroids in these cases. An oriented matroid of rank $$3$$ is pure if and only if it is a positroid (up to reorienting and relabeling its ground set). A graphical oriented matroid is pure if and only if its underlying graph is an outerplanar graph, that is, a subgraph of a triangulation of an $$n$$-gon. We give a simple conjectural characterization of pure oriented matroids by forbidden minors and prove it for the above classes of matroids (rank $$3$$, graphical, uniform). 
    more » « less