Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Motivated by a service platform, we study a two-sided network where heterogeneous demand (customers) and heterogeneous supply (workers) arrive randomly over time to get matched. Customers and workers arrive with a randomly sampled patience time (also known as reneging time in the literature) and are lost if forced to wait longer than that time to be matched. The system dynamics depend on the matching policy, which determines when to match a particular customer class with a particular worker class. Matches between classes use the head-of-line customer and worker from each class. Since customer and worker arrival processes can be very general counting processes, and the reneging times can be sampled from any finite mean distribution that is absolutely continuous, the state descriptor must track the age-in-system for every customer and worker waiting in order to be Markovian, as well as the time elapsed since the last arrival for every class. We develop a measure-valued fluid model that approximates the evolution of the discrete-event stochastic matching model and prove its solution is unique under a fixed matching policy. For a sequence of matching models, we establish a tightness result for the associated sequence of fluid-scaled state descriptors and show that any distributional limit point is a fluid model solution almost surely. When arrival rates are constant, we characterize the invariant states of the fluid model solution and show convergence to these invariant states as time becomes large. Finally, again when arrival rates are constant, we establish another tightness result for the sequence of fluid-scaled state descriptors distributed according to a stationary distribution and show that any subsequence converges to an invariant state. As a consequence, the fluid and time limits can be interchanged, which justifies regarding invariant states as first order approximations to stationary distributions.more » « less
-
We describe a fluid model with time-varying input that approximates a multiclass many-server queue with general reneging distribution and multiple customer classes (specifically, the multiclass G/GI/N+GI queue). The system dynamics depend on the policy, which is a rule for determining when to serve a given customer class. The class of admissible control policies are those that are head-of-the-line (HL) and nonanticipating. For a sequence of many-server queues operating under admissible HL control policies and satisfying some mild asymptotic conditions, we establish a tightness result for the sequence of fluid scaled queue state descriptors and associated processes and show that limit points of such sequences are fluid model solutions almost surely. The tightness result together with the characterization of distributional limit points as fluid model solutions almost surely provides a foundation for the analysis of particular HL control policies of interest. We leverage these results to analyze a set of admissible HL control policies that we introduce, called weighted random buffer selection (WRBS), and an associated WRBS fluid model that allows multiple classes to be partially served in the fluid limit (which is in contrast to previously analyzed static priority policies).more » « less
An official website of the United States government
