skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2054506

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Integrated hydrological modeling is an effective method for understanding interactions between parts of the hydrologic cycle, quantifying water resources, and furthering knowledge of hydrologic processes. However, these models are dependent on robust and accurate datasets that physically represent spatial characteristics as model inputs. This study evaluates multiple data‐driven approaches for estimating hydraulic conductivity and subsurface properties at the continental‐scale, constructed from existing subsurface dataset components. Each subsurface configuration represents upper (unconfined) hydrogeology, lower (confined) hydrogeology, and the presence of a vertical flow barrier. Configurations are tested in two large‐scale U.S. watersheds using an integrated model. Model results are compared to observed streamflow and steady state water table depth (WTD). We provide model results for a range of configurations and show that both WTD and surface water partitioning are important indicators of performance. We also show that geology data source, total subsurface depth, anisotropy, and inclusion of a vertical flow barrier are the most important considerations for subsurface configurations. While a range of configurations proved viable, we provide a recommended Selected National Configuration 1 km resolution subsurface dataset for use in distributed large‐and continental‐scale hydrologic modeling. 
    more » « less
  2. Abstract Water table depth (WTD) has a substantial impact on the connection between groundwater dynamics and land surface processes. Due to the scarcity of WTD observations, physically‐based groundwater models are growing in their ability to map WTD at large scales; however, they are still challenged to represent simulated WTD compared to well observations. In this study, we develop a purely data‐driven approach to estimating WTD at continental scale. We apply a random forest (RF) model to estimate WTD over most of the contiguous United States (CONUS) based on available WTD observations. The estimated WTD are in good agreement with well observations, with a Pearson correlation coefficient (r) of 0.96 (0.81 during testing), a Nash‐Sutcliffe efficiency (NSE) of 0.93 (0.65 during testing), and a root mean square error (RMSE) of 6.87 m (15.31 m during testing). The location of each grid cell is rated as the most important feature in estimating WTD over most of the CONUS, which might be a surrogate for spatial information. In addition, the uncertainty of the RF model is quantified using quantile regression forests. High uncertainties are generally associated with locations having a shallow WTD. Our study demonstrates that the RF model can produce reasonable WTD estimates over most of the CONUS, providing an alternative to physics‐based modeling for modeling large‐scale freshwater resources. Since the CONUS covers many different hydrologic regimes, the RF model trained for the CONUS may be transferrable to other regions with a similar hydrologic regime and limited observations. 
    more » « less
  3. Abstract This study synthesizes two different methods for estimating hydraulic conductivity (K) at large scales. We derive analytical approaches that estimate K and apply them to the contiguous United States. We then compare these analytical approaches to three‐dimensional, national gridded K data products and three transmissivity (T) data products developed from publicly available sources. We evaluate these data products using multiple approaches: comparing their statistics qualitatively and quantitatively and with hydrologic model simulations. Some of these datasets were used as inputs for an integrated hydrologic model of the Upper Colorado River Basin and the comparison of the results with observations was used to further evaluate the K data products. Simulated average daily streamflow was compared to daily flow data from 10 USGS stream gages in the domain, and annually averaged simulated groundwater depths are compared to observations from nearly 2000 monitoring wells. We find streamflow predictions from analytically informed simulations to be similar in relative bias and Spearman's rho to the geologically informed simulations.R‐squared values for groundwater depth predictions are close between the best performing analytically and geologically informed simulations at 0.68 and 0.70 respectively, with RMSE values under 10 m. We also show that the analytical approach derived by this study produces estimates of K that are similar in spatial distribution, standard deviation, mean value, and modeling performance to geologically‐informed estimates. The results of this work are used to inform a follow‐on study that tests additional data‐driven approaches in multiple basins within the contiguous United States. 
    more » « less
  4. Abstract This article presents a hydrological reconstruction of the Upper Colorado River Basin with an hourly temporal resolution, and 1-km spatial resolution from October 1982 to September 2019. The validated dataset includes a suite of hydrologic variables including streamflow, water table depth, snow water equivalent (SWE) and evapotranspiration (ET) simulated by an integrated hydrological model, ParFlow-CLM. The dataset was validated over the period with a combination of point observations and remotely sensed products. These datasets provide a long-term, natural-flow, simulation for one of the most over-allocated basins in the world. 
    more » « less
  5. Increases in evapotranspiration (ET) from global warming are decreasing streamflow in headwater basins worldwide. However, these streamflow losses do not occur uniformly due to complex topography. To better understand the heterogeneity of streamflow loss, we use the Budyko shape parameter (ω) as a diagnostic tool. We fit ω to 37-year of hydrologic simulation output in the Upper Colorado River Basin (UCRB), an important headwater basin in the US. We split the UCRB into two categories: peak watersheds with high elevation and steep slopes, and valley watersheds with lower elevation and gradual slopes. Our results demonstrate a relationship between streamflow loss and ω. The valley watersheds with greater streamflow loss have ω higher than 3.1, while the peak watersheds with less streamflow loss have an average ω of 1.3. This work highlights the use of ω as an indicator of streamflow loss and could be generalized to other headwater basin systems. 
    more » « less
  6. Physical aquifer models are a highly effective teaching tool for hydrology education, however they come with inherent limitations that include the high cost to purchase, the static configuration of the model materials, the time required to visualize hydrogeological phenomena, and the effort to reset and clean them over time. To address these and other limitations, we have developed an interactive computer simulation of a physical aquifer model called the ParFlow Sandtank. In this gamified interface, users run the simulation using a familiar web-app like interface with sliders and buttons while learning real hydrologic concepts. Our user interface allows participants to dive into the world of hydrology, understanding assumptions about model parameters such as hydraulic conductivity, making decisions about inputs to groundwater aquifer systems such as pumping rates, visualizing outputs such as stream flow, transport, and saturation, and exploring various factors that impact real environmental systems such as climate change. The ParFlow Sandtank has already been used in a variety of educational settings with more than 9,000 users per year, and we feel this emerging educational tool can be used broadly in educational environments and can be scaled-up to provide greater accessibility for students and educators. Here we present the capabilities and workflow of the ParFlow Sandtank, two use cases, and additional tools and custom templates that have been developed to support and enhance the reach of the ParFlow Sandtank. 
    more » « less
  7. Hydrologists and water managers increasingly face challenges associated with extreme climatic events. At the same time, historic datasets for modeling contemporary and future hydrologic conditions are increasingly inadequate. Machine learning is one promising technological tool for navigating the challenges of understanding and managing contemporary hydrological systems. However, in addition to the technical challenges associated with effectively leveraging ML for understanding subsurface hydrological processes, practitioner skepticism and hesitancy surrounding ML presents a significant barrier to adoption of ML technologies among practitioners. In this paper, we discuss an educational application we have developed—Sandtank-ML—to be used as a training and educational tool aimed at building user confidence and supporting adoption of ML technologies among water managers. We argue that supporting the adoption of ML methods and technologies for subsurface hydrological investigations and management requires not only the development of robust technologic tools and approaches, but educational strategies and tools capable of building confidence among diverse users. 
    more » « less
  8. null (Ed.)