skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2054522

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The hydrous mineral talc is stable over a relatively large P‐T field and can form due to fluid migration and metamorphic reactions in mafic and ultramafic rocks and in faults along plate boundary interfaces. Talc is known to be one of the weakest minerals, making it potentially important for the deformation dynamics and seismic characteristics of faults. However, little is known about talc's mechanical properties at high temperatures under confining pressures greater than 0.5 GPa. We present results of deformation experiments on natural talc cylinders exploring talc rheology under 0.5–1.5 GPa and 400–700°C, P‐T conditions simulating conditions at deep faults and subducted slab interface. At these pressures, the strength of talc is highly temperature‐dependent where the thermal weakening is associated with an increased tendency for localization. The strength of talc and friction coefficient inferred from Mohr circle analysis is between 0.13 at 400°C to ∼0.01 at 700°C. Strength comparison with other phyllosilicates highlights talc as the weakest mineral, a factor of ∼3–4 weaker than antigorite and a factor of ∼2 weaker than chlorite. The observed friction coefficients for talc are consistent with those inferred for subducted slabs and the San Andreas fault. We conclude that the presence of talc may explain the low strength of faults and of subducted slab interface at depths where transient slow slip events occur.

     
    more » « less
  2. Abstract

    Novel fluid medium pressure cells were used to deform antigorite under constant stress creep conditions at low temperature, low strain rate (10−9 − 10−41/s), and high pressure (1 GPa) in a Griggs‐type apparatus. Antigorite cores were deformed at constant temperatures between 75°C and 550°C, by applying 8–12 stress‐strain steps per temperature. The microstructures of deformed samples share features documented in previous work (e.g., shear microcracks), and highlight the importance of basal shear and kinks to antigorite plasticity. Rheological data were fit with a low temperature plasticity law, consistent with a deformation mechanism involving large lattice resistance. When applied at geologic stresses and strain rates, the extrapolated viscosity agrees well with predictions based on subduction zone thermal models.

     
    more » « less