Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Determining the fate of subducted oceanic crust is critical for understanding material cycling through Earth’s deep interior and sources of mantle heterogeneity. A key control on the distribution of subducted slabs over long timescales is the bridgmanite to post-perovskite phase transition in the lowermost mantle, thought to cause rheological weakening. Using high-resolution computational models, we show that the ubiquitous presence of weak post-perovskite at the core-mantle boundary can facilitate or prevent the accumulation of basaltic oceanic crust, depending on the amount of weakening and the crustal thickness. Moderately weak post-perovskite ( ~ 10–100× weaker) facilitates segregation of crust from subducted slabs, increasing basalt accumulation in dense piles. Conversely, very weak post-perovskite (more than 100× weaker) promotes vigorous plumes that entrain more crustal material, decreasing basalt accumulation. Our results reconcile the contradicting conclusions of previous studies and provide insights into the accumulation of subducted crust in the lowermost mantle throughout Earth’s history.more » « less
-
Abstract Paleosecular variation analysis is a primary tool for characterizing ancient geomagnetic behavior and its evolution through time. This study presents a new high‐quality directional data set, paleosecular variation of the Paleogene (PSVP), with and without correction for serial correlation, compiled from 1,667 sites from 45 different localities from the Paleogene and late Cretaceous (84–23 Ma). The data set is used to study the variability, structure, and latitude dependence of the geomagnetic field during that period by varying selection criteria and PSV models. Modeled values for the equatorial virtual geomagnetic pole (VGP) dispersion have over‐lapping uncertainty intervals within their uncertainty bounds between 8.3° and 18.6° for the past 250 Ma. We investigate the suitability of two descriptive models of PSV, Model G‐style quadratic fits and covariant Giant Gaussian Process models, and find that both styles of model fail to satisfactorily reproduce the latitude dependent morphology of PSV, but suggest that estimates of the equatorial VGP dispersion may still robustly characterize aspects of Earth's long‐term field morphology. During this time where the PSV behavior has not changed substantially, the reversal frequency has varied widely. The lack of a clear relationship between PSV behavior and reversal frequency is not trivially explained in the context of published findings regarding numerical geodynamo simulations.more » « less
-
SUMMARY The Earth’s magnetic field is generated by a dynamo in the outer core and is crucial for shielding our planet from harmful radiation. Despite the established importance of the core–mantle boundary (CMB) heat flux as driver for the dynamo, open questions remain about how heat flux heterogeneities affect the magnetic field. Here, we explore the distribution of the CMB heat flux on Earth and its changes over time using compressible global 3-D mantle convection models in the geodynamic modelling software ASPECT. We discuss the use of the consistent boundary flux method as a tool to more accurately compute boundary heat fluxes in finite element simulations and the workflow to provide the computed heat flux patterns as boundary conditions in geodynamo simulations. Our models use a plate reconstruction throughout the last 1 billion years—encompassing the complete supercontinent cycle—to determine the location and sinking speed of subducted plates. The results show how mantle upwellings and downwellings create localized heat flux anomalies at the CMB that can vary drastically over Earth’s history and depend on the properties and evolution of the lowermost mantle as well as the surface subduction zone configuration. The distribution of hot and cold structures at the CMB changes throughout the supercontinent cycle in terms of location, shape and number, indicating that these structures fluctuate and might have looked very differently in Earth’s past. We estimate the resulting amplitude of spatial heat flux variations, expressed by the ratio of peak-to-peak amplitude to average heat flux, q*, to be at least 2. However, depending on the material properties and the adiabatic heat flux out of the core, q* can easily reach values >30. For a given set of material properties, q* generally varies by 30–50 per cent over time. Our results have implications for understanding the Earth’s thermal evolution and the stability of its magnetic field over geological timescales. They provide insights into the potential effects of the mantle on the magnetic field and pave the way for further exploring questions about the nucleation of the inner core and the past state of the lowermost mantle.more » « less
-
Abstract Large igneous provinces (LIPs) have been linked to both surface and deep mantle processes. During the formation, tenure and break-up of the supercontinent Pangaea, there is an increase in emplacement events for both continental and oceanic LIPs. There is currently no clear consensus on the origin of LIPs, but a hypothesis relates their formation to crustal emplacement of hot plume material originating in the deep mantle. The interaction of subducted slabs with the lowermost mantle thermal boundary and subsequent return flow is a key control on such plume generation. This mechanism has been explored for LIPs below the interior of a supercontinent (i.e. continental LIPs). However, a number of LIPs formed exterior to Pangaea (e.g. Ontong Java Plateau), with no consensus on their formation mechanism. Here, we consider the dynamics of supercontinent processes as predicted by numerical models of mantle convection and analyse whether circum-supercontinent subduction could generate both interior (continental) and exterior (oceanic) deep mantle plumes. Our numerical models show that subduction related to the supercontinent cycle can reproduce the location and timing of the Ontong Java Plateau, Caribbean LIP and potentially the Shatsky Rise by linking the origin of these LIPs to the return flow that generated deep mantle exterior plumes.more » « less
-
SUMMARY Phase transitions play an important role for the style of mantle convection. While observations and theory agree that a substantial fraction of subducted slabs and rising plumes can move through the whole mantle at present day conditions, this behaviour may have been different throughout Earth’s history. Higher temperatures, such as in the early Earth, cause different phase transitions to be dominant, and also reduce mantle viscosity, favouring a more layered style of convection induced by phase transitions. A period of layered mantle convection in Earth’s past would have significant implications for the secular evolution of the mantle temperature and the mixing of mantle heterogeneities. The transition from layered to whole mantle convection could lead to a period of mantle avalanches associated with a dramatic increase in magmatic activity. Consequently, it is important to accurately model the influence of phase transitions on mantle convection. However, existing numerical methods generally preclude modelling phase transitions that are only present in a particular range of pressures, temperatures or compositions, and they impose an artificial lower limit on the thickness of phase transitions. To overcome these limitations, we have developed a new numerical method that solves the energy equation for entropy instead of temperature. This technique allows for robust coupling between thermodynamic and geodynamic models and makes it possible to model realistically sharp phase transitions with a wide range of properties and dynamic effects on mantle processes. We demonstrate the utility of our method by applying it in regional and global convection models, investigating the effect of individual phase transitions in the Earth’s mantle with regard to their potential for layering flow. We find that the thickness of the phase transition has a bigger influence on the style of convection than previously thought: with all other parameters being the same, a thin phase transition can induce fully layered convection where a broad phase transition would lead to whole-mantle convection. Our application of the method to convection in the early Earth illustrates that endothermic phase transitions may have induced layering for higher mantle temperatures in the Earth’s past.more » « less
-
Free, publicly-accessible full text available February 1, 2026
An official website of the United States government
