- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Garcia-Ortiz, Matteo X (1)
-
Jin, Qiu (1)
-
Árnadóttir, Líney (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
Flaherty, David W (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Flaherty, David W (Ed.)Urea is a common waste in agriculture runoff and has also been proposed as a promising oxidizable molecule in urea electrolysis for hydrogen production from wastewater. However, the overpotential of the electrochemical urea oxidation reaction (UOR) is high due to the complicated six-electron transfer process on most metal catalysts. The competition with oxygen evolution reaction (OER) further limits catalyst options for UOR. The most promising and studied catalysts for UOR are Ni-based catalysts. Here we study the reactivity of the basal β-NiOOH(001) surface for UOR and study the effects of metal doping (Mn, Fe, Co, and Cu) on the phase transformation from β-Ni(OH)2 to β-NiOOH, UOR, and OER pathways using density functional theory (DFT) calculations. The introduction of Mn and Fe dopants facilitates the formation of catalytically active β-NiOOH phase, and also favors the adsorption of urea compared to the undoped β-NiOOH surface, thereby significantly benefitting the overall UOR. Moreover, comparison of the effect of dopants on UOR and OER provides fundamental understanding of the competition between UOR and OER and how the dopants influence the reaction selectivity and competition. This work sheds light on the structure-property relationship of Ni-catalysts in urea oxidation and provides design principles for functional Ni-based materials, which will help accelerate the development of efficient UOR catalysts.more » « lessFree, publicly-accessible full text available January 1, 2027
An official website of the United States government
