skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2054989

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study regularity of solutions u u to ∂<#comment/> ¯<#comment/> u = f \overline \partial u=f on a relatively compact C 2 C^2 domain D D in a complex manifold of dimension n n , where f f is a ( 0 , q ) (0,q) form. Assume that there are either ( q + 1 ) (q+1) negative or ( n −<#comment/> q ) (n-q) positive Levi eigenvalues at each point of boundary ∂<#comment/> D \partial D . Under the necessary condition that a locally L 2 L^2 solution exists on the domain, we show the existence of the solutions on the closure of the domain that gain 1 / 2 1/2 derivative when q = 1 q=1 and f f is in the Hölder–Zygmund space Λ<#comment/> r ( D ) \Lambda ^r( D) with r > 1 r>1 . For q > 1 q>1 , the same regularity for the solutions is achieved when ∂<#comment/> D \partial D is either sufficiently smooth or of ( n −<#comment/> q ) (n-q) positive Levi eigenvalues everywhere on ∂<#comment/> D \partial D
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. We construct an injective map from the set of holomorphic equivalence classes of neighborhoods M of a compact complex manifold C into a finite dimension complex Euclidean space when the normal bundle of C in M is fixed and is either weakly negative or 2-positive. 
    more » « less
  4. We consider an embedded n-dimensional compact complex manifold in n+d dimensional complex manifolds. We are interested in the holomorphic classification of neighborhoods as part of Grauert’s formal principle program. We will give conditions ensuring that a neighborhood of C in M is biholomorphic to a neighborhood of the zero section of its normal bundle. This extends Arnold’s result about neighborhoods of a complex torus in a surface. We also prove the existence of a holomorphic foliation in Mn+d having C as a compact leaf, extending Ueda’s theory to the high codimension case. Both problems appear as a kind of linearization problems involving small divisors conditions arising from solutions to their cohomological equations. 
    more » « less