skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2055014

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 2, 2025
  2. Industry is increasingly adopting private 5G networks to securely manage their wireless devices in retail, manufacturing, natural resources, and healthcare. As with most technology sectors, open- source software is well poised to form the foundation of deployments, whether it is deployed directly or as part of well-maintained proprietary offerings. This paper seeks to examine the use of cryptography and secure randomness in open-source cellular cores. We design a set of 13 CodeQL static program analysis rules for cores written in both C/C++ and Go and apply them to 7 open-source cellular cores implementing 4G and 5G functionality. We identify two significant security vulnerabilities, including predictable generation of TMSIs and improper verification of TLS certificates, with each vulnerability affecting multiple cores. In identifying these flaws, we hope to correct implementations to fix downstream deployments and derivative proprietary projects. 
    more » « less
  3. 5G technology transitions the cellular network core from specialized hardware into software-based cloud-native network functions (NFs). As part of this change, the 3GPP defines an access control policy to protect NFs from one another and third-party network applications. A manual review of this policy by the 3GPP identified an over-privilege flaw that exposes cryptographic keys to all NFs. Unfortunately, such a manual review is difficult due to ambiguous documentation. In this paper, we use static program analysis to extract NF functionality from four 5G core implementations and compare that functionality to what is permissible by the 3GPP policy. We discover two previously unknown instances of over-privilege that can lead denial-of-service and extract sensitive data. We have reported our findings to the GSMA, who has confirmed the significance of these policy flaws. 
    more » « less