skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2055192

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The space hurricane is a three‐dimensional magnetic vortex structure with strong flow shears and electron precipitation in the polar cap. This study investigates for the first time how a space hurricane disturbs the polar thermosphere. During the formation and development of the space hurricane, the directional reversal of the horizontal neutral wind and the plasma convection will both be relocated from the poleward auroral oval boundary to the edge of the space hurricane, but the neutral wind responds slower compared to the plasma convection. Strong flow shears in the space hurricane causes enhanced Joule heating in the polar cap, which heats the thermosphere and triggers Atmospheric Gravity Waves (AGWs). Statistical results reveal that significant AGWs mainly are located on the dawnside of the space hurricane, suggesting that the space hurricane plays a significant role in ion‐neutral coupling and generation of polar cap AGWs. 
    more » « less
  2. Abstract Extreme (>20 nT/s) geomagnetic disturbances (GMDs, also denoted as MPEs—magnetic perturbation events)—impulsive nighttime disturbances with time scale ∼5–10 min, have sufficient amplitude to cause bursts of geomagnetically induced currents (GICs) that can damage technical infrastructure. In this study, we present occurrence statistics for extreme GMD events from five stations in the MACCS and AUTUMNX magnetometer arrays in Arctic Canada at magnetic latitudes ranging from 65° to 75°. We report all large (≥6 nT/s) and extreme GMDs from these stations from 2011 through 2022 to analyze variations of GMD activity over a full solar cycle and compare them to those found in three earlier studies. GMD activity between 2011 and 2022 did not closely follow the sunspot cycle, but instead was lowest during its rising phase and maximum (2011–2014) and highest during the early declining phase (2015–2017). Most of these GMDs, especially the most extreme, were associated with high‐speed solar wind streams (Vsw >600 km/s) and steady solar wind pressure. All extreme GMDs occurred within 80 min after substorm onsets, but few within 5 min. Multistation data often revealed a poleward progression of GMDs, consistent with a tailward retreat of the magnetotail reconnection region. These observations indicate that extreme GIC hazard conditions can occur for a variety of solar wind drivers and geomagnetic conditions, not only for fast‐coronal mass ejection driven storms. 
    more » « less
  3. Abstract The Poynting vector (Poynting flux) from Earth's magnetosphere downward toward its ionosphere carries the energy that powers the Joule heating in the ionosphere and thermosphere. The Joule heating controls fundamental ionospheric properties affecting the entire magnetosphere‐ionosphere‐thermosphere system, so it is necessary to understand when and where the Poynting flux is significant. Taking advantage of new data sets generated from DMSP (Defense Meteorological Satellite Program) observations, we investigate the Poynting flux distribution within and around the auroral zone, where most magnetosphere‐ionosphere (M‐I) dynamics and thus Joule heating occurs. We find that the Poynting flux, which is generally larger under more active conditions, is concentrated in the sunlit cusp and near the interface between Region 1 and 2 currents. The former concentration suggests voltage generators drive the cusp dynamics. The latter concentration shows asymmetries with respect to the interface between the Region 1 and 2 currents. We show that these reflect the controlling impact of subauroral polarization streams and dawnside auroral polarization streams on the Poynting flux. 
    more » « less
  4. Abstract A new observational phenomenon, named Simultaneous Global Ionospheric Density Disturbance (SGD), is identified in GNSS total electron content (TEC) data during periods of three typical geospace disturbances: a Coronal Mass Ejection‐driven severe disturbance event, a high‐speed stream event, and a minor disturbance day with a maximum Kp of 4. SGDs occur frequently on dayside and dawn sectors, with a ∼1% TEC increase. Notably, SGDs can occur under minor solar‐geomagnetic disturbances. SGDs are likely caused by penetration electric fields (PEFs) of solar‐geomagnetic origin, as they are associated with Bz southward, increased auroral AL/AU, and solar wind pressure enhancements. These findings offer new insights into the nature of PEFs and their ionospheric impact while confirming some key earlier results obtained through alternative methods. Importantly, the accessibility of extensive GNSS networks, with at least 6,000 globally distributed receivers for ionospheric research, means that rich PEF information can be acquired, offering researchers numerous opportunities to investigate geospace electrodynamics. 
    more » « less
  5. Abstract We report the first observations of the association between equatorward extending streamers and overshielding using the THEMIS all‐sky imagers and ground magnetometers. Because auroral streamers indicate plasma sheet flow bursts, these observations uncover the effect of flow bursts on overshielding. Results show that, in general, bright equatorward extended streamers were associated with an increase in equatorial electrojet (EEJ) on the nightside and a decrease in the dayside EEJ, indicating a striking correspondence between auroral streamers and overshielding conditions. Thus, the driving of overshielding at equatorial latitudes can be identified via bright equatorward extended streamers, indicating that flow bursts are an alternate means to discern the earthward injections that increase the region 2 field aligned currents and associated overshielding electric fields. Repetitive auroral streamers were associated with repetitive overshielding, resulting in a stepwise development of the dayside and nightside EEJ. The stepwise intensifications were also observed in the midlatitude positive bay and Pi2 pulsations. Our results could explain the occurrence of overshielding conditions at equatorial latitudes during substorms and nonsubstorm times without a northward turning of IMF‐Bz. As seen through streamers, the localized current structures (wedgelets) associated with flow bursts giving injection that leads to overshielding is titled northeast‐to‐southwest. Our results add a new element to the understanding of high‐to‐low latitude electrodynamical coupling by demonstrating the association between bright equatorward extended auroral streamers and enhanced shielding electric fields caused by earthward injections associated with flow bursts. 
    more » « less
  6. Abstract We present observations during two substorms using simultaneous Time History of Events and Macroscale Interactions During Substorms satellites and all‐sky imagers to determine plasma sheet dynamics associated with substorm auroral onset beads. The multi‐satellite observations showed that the cross‐tail current decreased and the field‐aligned currents increased at the substorm auroral onset, indicating that the satellites detected an initiation of the currents being deflected to the ionosphere. For duskward‐propagating beads, the electric field was tailward, and ions were accumulated closer to the Earth than electrons. The mapped bead propagation speed was close to energetic ion drift speed. Theand electron drift speeds increased duskward and reduced the cross‐tail current at the onset. For dawnward‐propagating beads, the electric field was equatorward/earthward, and electrons were inferred to accumulate earthward of ions. The mapped bead propagation speed was comparable to the dawnwardand electron drift speeds. The duskward ion drift and tail current were reduced, and electrons became the dominant current carrier. We suggest that the plasma species that is responsible for the bead propagation changes with the electric field configuration and that the tail current reduction by the enhanceddrift at onset destabilizes the plasma sheet. Ion and electron outflows substantially increased low‐energy plasma density and may have increased the role ofdrifts. The bead wavelength was comparable to ion gyroradius and thus ion kinetic effects are important for determining the wavelength. In the dawnward‐propagating event, the mode of oscillation in the plasma sheet was suggested to be the sausage‐mode flapping oscillations. 
    more » « less
  7. Abstract Embedded Region 1 and 2 field‐aligned currents (FACs), intense FAC layers of mesoscale latitudinal width near the interface between large‐scale Region 1 and Region 2 FACs, are related to dramatic phenomena in the ionosphere such as discrete arcs, inverted‐V precipitation, and dawnside auroral polarization streams. These relationships suggest that the embedded FACs are potentially important for understanding ionospheric heating and magnetosphere‐ionosphere (M‐I) coupling and instabilities. Previous case studies of embedded FACs have led to the speculation that they may result from enhanced M‐I convection during active times. To explore this idea further, we investigate statistically their occurrence rates under a variety of geomagnetic conditions with a large event list constructed from 17 years of Defense Meteorological Satellite Program observations. The identification procedure is fully automated and explicit. The statistical results indicate that embedded Region 1 and 2 FACs are common, and that they have a higher chance to occur when the level of geomagnetic activity is higher (given by various indices), supporting the idea that they result from enhanced M‐I convection. 
    more » « less
  8. Abstract Auroral observations were first to identify the substorm, and later used to propose that substorm onset is triggered in the inner plasma sheet (equatorward portion of the auroral oval) by an intrusion of low entropy plasma comprising plasma sheet flow channels. Longitudinal localization makes the intruding flow channels difficult to observe with spacecraft. However, they are detectable in the ionosphere via the broader, two‐dimensional coverage by radars. Line‐of‐sight radar flow measurements have provided considerable support for the onset proposal. Here we use two‐dimensional, ionospheric flow maps for further testing. Since these maps are derived without the smoothing from global fits typically used for global convection maps, their spatial resolution is significantly improved, allowing representation of localized spatial structures. These maps show channels of enhanced ionospheric flow intruding to the time and location of substorm onset. We also see evidence that these intruding flows enter the plasma sheet from the polar cap, and that azimuthal spread of the reduced entropy plasma in the inner plasma sheet contributes to azimuthal onset spreading after initial onset. Identified events with appropriate radar data remain limited, but we have found no exceptions to consistency with flow channel triggering. Thus, these analyses strongly support the proposal that substorm onset is due to the intrusion of new plasma to the onset region. The lower entropy of the new plasma likely changes the entropy distribution of inner plasma sheet, a change possibly important for the substorm onset instability seen via the growing waves that demarcate substorm auroral onset. 
    more » « less
  9. Abstract The intrinsic temporal nature of magnetic reconnection at the magnetopause has been an active area of research. Both temporally steady and intermittent reconnection have been reported. We examine the steadiness of reconnection using space‐ground conjunctions under quasi‐steady solar wind driving. The spacecraft suggests that reconnection is first inactive, and then activates. The radar further suggests that after activation, reconnection proceeds continuously but unsteadily. The reconnection electric field shows variations at frequencies below 10 mHz with peaks at 3 and 5 mHz. The variation amplitudes are ∼10–30 mV/m in the ionosphere, and 0.3–0.8 mV/m at the equatorial magnetopause. Such amplitudes represent 30%–60% of the peak reconnection electric field. The unsteadiness of reconnection can be plausibly explained by the fluctuating magnetic field in the turbulent magnetosheath. A comparison with a previous global hybrid simulation suggests that it is the foreshock waves that drive the magnetosheath fluctuations, and hence modulate the reconnection. 
    more » « less
  10. Flow channels can extend across the polar cap from the dayside to the nightside auroral oval, where they lead to localized reconnection and auroral oval disturbances. Such flow channels can persist within the polar cap >1½ hours, can move azimuthally with direction controlled by IMF By, and may affect time and location of auroral oval disturbances. We have followed a polar cap arc as it moved duskward from Canada to Alaska for ∼2 h while connected to the oval. Two-dimensional ionospheric flows show an adjacent flow channel that moved westward with the arc and was a distinct feature of polar cap convection that locally impinged upon the outer boundary of the auroral oval. The flow channel’s interaction with the oval appears to have triggered two separate substorms during its trip across western Canada and Alaska, controlling the onset location and contributing to subsequent development of substorm activity within the oval. The first substorm (over Canada) occurred during approximately equatorward polar cap flow, whereas the second substorm (over Alaska) occurred as the polar cap arc and flow channel bent strongly azimuthally and appeared to “lay down” along the poleward boundary. The oval became unusually thin, leading to near contact between the polar cap arc and the brightening onset auroral arc within the oval. These observations illustrate the crucial role of polar cap flow channels in the time, location, and duration of space weather activity, and the importance of the duration and azimuthal motion of flow channels within the nightside polar cap. 
    more » « less