skip to main content


Search for: All records

Award ID contains: 2055192

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present observations during two substorms using simultaneous Time History of Events and Macroscale Interactions During Substorms satellites and all‐sky imagers to determine plasma sheet dynamics associated with substorm auroral onset beads. The multi‐satellite observations showed that the cross‐tail current decreased and the field‐aligned currents increased at the substorm auroral onset, indicating that the satellites detected an initiation of the currents being deflected to the ionosphere. For duskward‐propagating beads, the electric field was tailward, and ions were accumulated closer to the Earth than electrons. The mapped bead propagation speed was close to energetic ion drift speed. Theand electron drift speeds increased duskward and reduced the cross‐tail current at the onset. For dawnward‐propagating beads, the electric field was equatorward/earthward, and electrons were inferred to accumulate earthward of ions. The mapped bead propagation speed was comparable to the dawnwardand electron drift speeds. The duskward ion drift and tail current were reduced, and electrons became the dominant current carrier. We suggest that the plasma species that is responsible for the bead propagation changes with the electric field configuration and that the tail current reduction by the enhanceddrift at onset destabilizes the plasma sheet. Ion and electron outflows substantially increased low‐energy plasma density and may have increased the role ofdrifts. The bead wavelength was comparable to ion gyroradius and thus ion kinetic effects are important for determining the wavelength. In the dawnward‐propagating event, the mode of oscillation in the plasma sheet was suggested to be the sausage‐mode flapping oscillations.

     
    more » « less
  2. Abstract

    Embedded Region 1 and 2 field‐aligned currents (FACs), intense FAC layers of mesoscale latitudinal width near the interface between large‐scale Region 1 and Region 2 FACs, are related to dramatic phenomena in the ionosphere such as discrete arcs, inverted‐V precipitation, and dawnside auroral polarization streams. These relationships suggest that the embedded FACs are potentially important for understanding ionospheric heating and magnetosphere‐ionosphere (M‐I) coupling and instabilities. Previous case studies of embedded FACs have led to the speculation that they may result from enhanced M‐I convection during active times. To explore this idea further, we investigate statistically their occurrence rates under a variety of geomagnetic conditions with a large event list constructed from 17 years of Defense Meteorological Satellite Program observations. The identification procedure is fully automated and explicit. The statistical results indicate that embedded Region 1 and 2 FACs are common, and that they have a higher chance to occur when the level of geomagnetic activity is higher (given by various indices), supporting the idea that they result from enhanced M‐I convection.

     
    more » « less
  3. Abstract

    Auroral observations were first to identify the substorm, and later used to propose that substorm onset is triggered in the inner plasma sheet (equatorward portion of the auroral oval) by an intrusion of low entropy plasma comprising plasma sheet flow channels. Longitudinal localization makes the intruding flow channels difficult to observe with spacecraft. However, they are detectable in the ionosphere via the broader, two‐dimensional coverage by radars. Line‐of‐sight radar flow measurements have provided considerable support for the onset proposal. Here we use two‐dimensional, ionospheric flow maps for further testing. Since these maps are derived without the smoothing from global fits typically used for global convection maps, their spatial resolution is significantly improved, allowing representation of localized spatial structures. These maps show channels of enhanced ionospheric flow intruding to the time and location of substorm onset. We also see evidence that these intruding flows enter the plasma sheet from the polar cap, and that azimuthal spread of the reduced entropy plasma in the inner plasma sheet contributes to azimuthal onset spreading after initial onset. Identified events with appropriate radar data remain limited, but we have found no exceptions to consistency with flow channel triggering. Thus, these analyses strongly support the proposal that substorm onset is due to the intrusion of new plasma to the onset region. The lower entropy of the new plasma likely changes the entropy distribution of inner plasma sheet, a change possibly important for the substorm onset instability seen via the growing waves that demarcate substorm auroral onset.

     
    more » « less
  4. Abstract

    The intrinsic temporal nature of magnetic reconnection at the magnetopause has been an active area of research. Both temporally steady and intermittent reconnection have been reported. We examine the steadiness of reconnection using space‐ground conjunctions under quasi‐steady solar wind driving. The spacecraft suggests that reconnection is first inactive, and then activates. The radar further suggests that after activation, reconnection proceeds continuously but unsteadily. The reconnection electric field shows variations at frequencies below 10 mHz with peaks at 3 and 5 mHz. The variation amplitudes are ∼10–30 mV/m in the ionosphere, and 0.3–0.8 mV/m at the equatorial magnetopause. Such amplitudes represent 30%–60% of the peak reconnection electric field. The unsteadiness of reconnection can be plausibly explained by the fluctuating magnetic field in the turbulent magnetosheath. A comparison with a previous global hybrid simulation suggests that it is the foreshock waves that drive the magnetosheath fluctuations, and hence modulate the reconnection.

     
    more » « less
  5. Dynamic mesoscale flow structures move across the open field line regions of the polar caps and then enter the nightside plasma sheet where they can cause important space weather disturbances, such as streamers, substorms, and omega bands. The polar cap structures have long durations (apparently at least ∼1½ to 2 h), but their connections to disturbances have received little attention. Hence, it will be important to uncover what causes these flow enhancement channels, how they map to the magnetospheric and magnetosheath structures, and what controls their propagation across the polar cap and their dynamic effects after reaching the nightside auroral oval. The examples presented here use 630-nm auroral and radar observations and indicate that the motion of flow channels could be critical for determining when and where a particular disturbance within the nightside auroral oval will be triggered, and this could be included for full understanding of flow channel connections to disturbances. Also, it is important to determine how polar cap flow channels lead to flow channels within the auroral oval, i.e., the plasma sheet, and determine the conditions along nightside oval/plasma sheet field lines that interact with an incoming polar cap flow channel to cause a particular disturbance. It will also be interesting to consider the generality of geomagnetic disturbances being related to connections with incoming polar cap flow channels, including the location, time, and type of disturbances, and whether the duration and expansion of disturbances are related to flow channel duration and to multiple flow channels. 
    more » « less
    Free, publicly-accessible full text available April 27, 2024
  6. It has become well-established that strong outer radiation belt enhancements are due to wave-driven electron energization by whistler-mode chorus waves. However, in this study, we examine strong MeV electron injections on 10 July 2019 and find substantial evidence that such injections may be a crucial contributor to outer radiation belt enhancement events. For such an examination, it is essential to precisely separate temporal flux changes from spatial variations observed as Van Allen Probes move along their orbits. Employing a new “hourly snapshot” analysis approach, we discover unprecedented details of electron flux evolutions that suggest that for this event, the outer belt enhancement was not continuous but instead intermittent, mostly composed of 4 large discrete injection-driven flux increases. The injections appear as sharp flux increases when observed near apogee. Otherwise, by comparing hourly snapshots for different times, we infer injections and infer temporally stable fluxes between injections, despite strong and continuous chorus emission. The fast and intermittent electron flux growth successively extending earthwards implies cumulative outer belt enhancement via a series of repetitive inward transport associated with injection-induced electric fields. 
    more » « less
  7. The space hurricane is a newly discovered large-scale three-dimensional magnetic vortex structure that spans the polar ionosphere and magnetosphere. At the height of the ionosphere, it has a strong circular horizontal plasma flow with a nearly zero-flow center and a coincident cyclone-shaped aurora caused by strong electron precipitation associated with intense upward magnetic field-aligned currents. By analyzing the long-term optical observation onboard the Defense Meteorological Satellite Program (DMSP) F16 satellite from 2005 to 2016, we found that space hurricanes in the Northern Hemisphere occur in summer and have a maximum occurrence rate in the afternoon sector around solar maximum. In particular, space hurricanes are more likely to occur in the dayside polar cap at magnetic latitudes greater than 80°, and their MLT (magnetic local time) dependence shows a positive relationship with the IMF (interplanetary magnetic field) clock angle. We also found that space hurricanes occur mainly under dominant positive IMF By and Bz and negative Bx conditions. It is suggested that the stable high-latitude lobe reconnection, which occurs under the conditions of a large Earth’s dipole tilt angle and high ionosphere conductivity in summer, should be the formation mechanism of space hurricanes. The result will give a better understanding of the solar wind–magnetosphere–ionosphere coupling process under northward IMF conditions. 
    more » « less