Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Alternative ecological theories make divergent predictions about the relationship between predators and their prey. If predators exert top‐down ecosystem control, increases in predation should diminish prey abundance and could either diminish or enhance community diversity of prey species. However, if bottom‐up ecosystem controls predominate, predator populations should track underlying variation in prey diversity and abundance, which ultimately should reflect available energy. Past research, both across islands and comparing islands with the mainland, has frequently invoked the importance of predation in regulating lizard abundance and diversity, suggesting an important role of top‐down control when predators are present. However, others have posited a stronger role of food limitation, via competition or bottom‐up forces. If top‐down control predominates, then negative correlations between prey abundance and predator occurrence should emerge within and among islands. Using data from eBird, we inferred landscape‐level presence data for bird species on the islands of Jamaica and Hispaniola. By summing occurrence probabilities of all known anole‐predator birds, we estimated total avian predation pressure and combined these estimates with anole community data from a mark‐recapture study that spanned spatial and climatic gradients on both islands. Avian predators and anole lizards were both affected by climate, with total predator occurrence, anole abundance and anole species richness increasing with mean annual temperature. Anole abundance and predator occurrence showed a curvilinear relationship, where abundance and predator occurrence increased together until predator occurrence became sufficiently high that anole abundance was negatively impacted. This indicates that bottom‐up ecosystem controls drive richness of both anoles and their predators, mitigating the negative effects predators might have on their prey, at least until predator occurrence reaches a threshold. We did not detect consistent evidence of predator occurrence reducing anole community richness. These findings support past research showing that islands with more predators tend to have lower prey abundances, but it does not seem that these top‐down forces are strongly limiting species coexistence. Instead, bottom‐up forces linked with climate may be more important drivers of diversity in both lizards and their avian predators on these islands.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Functional diversity is expected to decrease following land conversion. Empirically, however, the consequences of such changes are highly variable. One possible explanation is that the magnitude and direction of functional diversity change depends on how agricultural land conversion interacts with the original determinants of community assembly (e.g., temperature and elevation gradients). We compared the functional structure of 50 Anolis lizard communities on the island of Hispaniola in both forested and deforested habitats along an elevation gradient, as elevation often determines community composition. We used morphological measurements of body size, limb and tail length, and toepad width to capture ecomorphological aspects of functional diversity. These traits are strongly linked to habitat use which has been shown to be the primary axis of niche partitioning in anoles. We found that deforestation had little effect on functional (morphological) richness at low elevations but increased functional richness and evenness at high elevations, where natural communities are depauperate due to thermal constraints. Simultaneously, deforestation reduced spatial turnover and eliminated morphologically peripheral species. These results suggest that how land conversion affects communities depends on whether it relaxes or reinforces a community’s dominant environmental filters: at high elevations, as deforestation increases daytime temperatures, the filters that typically shape these communities are relaxed, allowing them to functionally resemble low elevation communities. While this enriches high-elevation communities, it also removes morphologically unique species and homogenizes diversity across elevations. Our results highlight that how land conversion reorganizes the functional structure of a community depends on that community’s environmental context.more » « lessFree, publicly-accessible full text available August 25, 2026
- 
            Predicting ecological responses to rapid environmental change has become one of the greatest challenges of modern biology. One of the major hurdles in forecasting these responses is accurately quantifying the thermal environments that organisms experience. The distribution of temperatures available within an organism's habitat is typically measured using data loggers called operative temperature models (OTMs) that are designed to mimic certain properties of heat exchange in the focal organism. The gold standard for OTM construction in studies of terrestrial ectotherms has been the use of copper electroforming which creates anatomically accurate models that equilibrate quickly to ambient thermal conditions. However, electroformed models require the use of caustic chemicals, are often brittle, and their production is expensive and time intensive. This has resulted in many researchers resorting to the use of simplified OTMs that can yield substantial measurement errors. 3D printing offers the prospect of robust, easily replicated, morphologically accurate, and cost-effective OTMs that capture the benefits but alleviate the problems associated with electroforming. Here, we validate the use of OTMs that were 3D printed using several materials across eight lizard species of different body sizes and living in habitats ranging from deserts to tropical forests. We show that 3D printed OTMs have low thermal inertia and predict the live animal's equilibration temperature with high accuracy across a wide range of body sizes and microhabitats. Finally, we developed a free online repository and database of 3D scans (https://www.3dotm.org/) to increase the accessibility of this tool to researchers around the world and facilitate ease of production of 3D printed models. 3D printing of OTMs is generalizable to taxa beyond lizards. If widely adopted, this approach promises greater accuracy and reproducibility in studies of terrestrial thermal ecology and should lead to improved forecasts of the biological impacts of climate change.more » « less
- 
            With decades of intensive study, Anolis lizards have emerged as a biological model system. We review how new research on anoles has advanced our understanding of ecology and evolution, challenging long-standing paradigms and opening new areas of inquiry. Recent anole research reveals how changes in behavior can restructure ecological communities and can both stimulate and stymie evolution, sometimes simultaneously. Likewise, investigation of anoles as spatial or phylogenetic evolutionary experiments has documented evolutionary repeatability across spatiotemporal scales, while also illuminating its limits. Current research places anoles as an emerging model for Anthropocene biology, with recent work illustrating how species respond as humans reconfigure natural habitats, alter the climate, and create novel environments and communities through urbanization and species introduction. Combined with ongoing methodological developments in genomics, phylogenetics, and ecology, the growing foundational knowledge of Anolis positions them as a powerful model system in ecology and evolution for years to come. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
