skip to main content


Search for: All records

Award ID contains: 2100075

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The pharmaceutical industry employs various strategies to improve cell productivity. These strategies include process intensification, culture media improvement, clonal selection, media supplementation and genetic engineering of cells. However, improved cell productivity has inherent risk of impacting product quality attributes (PQA). PQAs may affect the products’ efficacy via stability, bioavailability, or in vivo bioactivity. Variations in manufacturing process may introduce heterogeneity in the products by altering the type and extent of N-glycosylation, which is a PQA of therapeutic proteins. We investigated the effect of different cell densities representing increasing process intensification in a perfusion cell culture on the production of an IgG1-κ monoclonal antibody from a CHO-K1 cell line. This antibody is glycosylated both on light chain and heavy chain. Our results showed that the contents of glycosylation of IgG1-κ mAb increased in G0F and fucosylated type glycans as a group, whereas sialylated type glycans decreased, for the mAb whole protein. Overall, significant differences were observed in amounts of G0F, G1F, G0, G2FS1, and G2FS2 type glycans across all process intensification levels. G2FS2 and G2 type N-glycans were predominantly quantifiable from light chain rather than heavy chain. It may be concluded that there is a potential impact to product quality attributes of therapeutic proteins during process intensification via perfusion cell culture that needs to be assessed. Since during perfusion cell culture the product is collected throughout the duration of the process, lot allocation needs careful attention to process parameters, as PQAs are affected by the critical process parameters (CPPs).

    Key points

    • Molecular integrity may suffer with increasing process intensity.

    • Galactosylated and sialylated N-glycans may decrease.

    • Perfusion culture appears to maintain protein charge structure.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Yongjin J. Zhou (Ed.)
    Abstract

    A new biomanufacturing platform combining intracellular metabolic engineering of the oleaginous yeastYarrowia lipolyticaand extracellular bioreaction engineering provides efficient bioconversion of plant oils/animal fats into high‐value products. However, predicting the hydrodynamics and mass transfer parameters is difficult due to the high agitation and sparging required to create dispersed oil droplets in an aqueous medium for efficient yeast fermentation. In the current study, commercial computational fluid dynamic (CFD) solver Ansys CFX coupled with the MUSIG model first predicts two‐phase system (oil/water and air/water) mixing dynamics and their particle size distributions. Then, a three‐phase model (oil, air, and water) utilizing dispersed air bubbles and a polydispersed oil phase was implemented to explore fermenter mixing, gas dispersion efficiency, and volumetric mass transfer coefficient estimations (kLa). The study analyzed the effect of the impeller type, agitation speed, and power input on the tank's flow field and revealed that upward‐pumping pitched blade impellers (PBI) in the top two positions (compared to Rushton‐type) provided advantageous oil phase homogeneity and similar estimatedkLavalues with reduced power. These results show good agreement with the experimental mixing andkLadata.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Abstract

    A majority of the biotherapeutics industry today relies on the manufacturing of monoclonal antibodies from Chinese hamster ovary (CHO) cells, yet challenges remain with maintaining consistent product quality from high‐producing cell lines. Previous studies report the impact of individual trace metal supplemental on CHO cells, and thus, the combinatorial effects of these metals could be leveraged to improve bioprocesses further. A three‐level factorial experimental design was performed in fed‐batch shake flasks to evaluate the impact of time wise addition of individual or combined trace metals (zinc and copper) on CHO cell culture performance. Correlations among each factor (experimental parameters) and response variables (changes in cell culture performance) were examined based on their significance and goodness of fit to a partial least square's regression model. The model indicated that zinc concentration and time of addition counter‐influence peak viable cell density and antibody production. Meanwhile, early copper supplementation influenced late‐stage ROS activity in a dose‐dependent manner likely by alleviating cellular oxidative stress. Regression coefficients indicated that combined metal addition had less significant impact on titer and specific productivity compared to zinc addition alone, although titer increased the most under combined metal addition. Glycan analysis showed that combined metal addition reduced galactosylation to a greater extent than single metals when supplemented during the early growth phase. A validation experiment was performed to confirm the validity of the regression model by testing an optimized setpoint of metal supplement time and concentration to improve protein productivity.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  4. Abstract

    Gene therapy is a promising therapeutic approach for genetic and acquired diseases nowadays. Among DNA delivery vectors, recombinant adeno‐associated virus (rAAV) is one of the most effective and safest vectors used in commercial drugs and clinical trials. However, the current yield of rAAV biomanufacturing lags behind the necessary dosages for clinical and commercial use, which embodies a concentrated reflection of low productivity of rAAV from host cells, difficult scalability of the rAAV‐producing bioprocess, and high levels of impurities materialized during production. Those issues directly impact the price of gene therapy medicine in the market, limiting most patients’ access to gene therapy. In this context, the current practices and several critical challenges associated with rAAV gene therapy bioprocesses are reviewed, followed by a discussion of recent advances in rAAV‐mediated gene therapy and other therapeutic biological fields that could improve biomanufacturing if these advances are integrated effectively into the current systems. This review aims to provide the current state‐of‐the‐art technology and perspectives to enhance the productivity of rAAV while reducing impurities during production of rAAV.

     
    more » « less
  5. Abstract

    Recombinant adeno‐associated virus (rAAV) vectors are a promising platform for in vivo gene therapies. However, cost‐effective, well‐characterized processes necessary to manufacture rAAV therapeutics are challenging to develop without an understanding of how process parameters (PPs) affect rAAV product quality attributes (PQAs). In this work, a central composite orthogonal experimental design was employed to examine the influence of four PPs for transient transfection complex formation (polyethylenimine:DNA [PEI:DNA] ratio, total DNA/cell, cocktail volume, and incubation time) on three rAAV PQAs related to capsid content (vector genome titer, vector genome:capsid particle ratio, and two‐dimensional vector genome titer ratio). A regression model was established for each PQA using partial least squares, and a design space (DS) was defined in which Monte Carlo simulations predicted < 1% probability of failure (POF) to meet predetermined PQA specifications. Of the three PQAs, viral genome titer was most strongly correlated with changes in complexation PPs. The DS and acceptable PP ranges were largest when incubation time and cocktail volume were kept at mid‐high setpoints, and PEI:DNA ratio and total DNA/cell were at low‐mid setpoints. Verification experiments confirmed model predictive capability, and this work establishes a framework for studying other rAAV PPs and their relationship to PQAs.

     
    more » « less
  6. Abstract

    The development of gene therapies based on recombinant adeno‐associated viruses (rAAVs) has grown exponentially, so the current rAAV manufacturing platform needs to be more efficient to satisfy rising demands. Viral production exerts great demand on cellular substrates, energy, and machinery; therefore, viral production relies heavily on the physiology of the host cell. Transcriptomics, as a mechanism‐driven tool, was applied to identify significantly regulated pathways and to study cellular features of the host cell for supporting rAAV production. This study investigated the transcriptomic features of two cell lines cultured in their respective media by comparing viral‐producing cultures with non‐producing cultures over time in parental human embryonic kidney cells (HEK293). The results demonstrate that the innate immune response signaling pathways of host cells (e.g., RIG‐I‐like receptor signaling pathway, Toll‐like receptor signaling pathway, cytosolic DNA sensing pathway, JAK‐STAT signaling pathway) were significantly enriched and upregulated. This was accompanied by the host cellular stress responses, including endoplasmic reticulum stress, autophagy, and apoptosis in viral production. In contrast, fatty acid metabolism and neutral amino acid transport were downregulated in the late phase of viral production. Our transcriptomics analysis reveals the cell‐line independent signatures for rAAV production and serves as a significant reference for further studies targeting the productivity improvement in the future.

     
    more » « less
  7. Abstract

    Previously, we identified six inhibitory metabolites (IMs) accumulating in Chinese hamster ovary (CHO) cultures using AMBIC 1.0 community reference medium that negatively impacted culture performance. The goal of the current study was to modify the medium to control IM accumulation through design of experiments (DOE). Initial over‐supplementation of precursor amino acids (AAs) by 100% to 200% in the culture medium revealed positive correlations between initial AA concentrations and IM levels. A screening design identified 5 AA targets, Lys, Ile, Trp, Leu, Arg, as key contributors to IMs. Response surface design analysis was used to reduce initial AA levels between 13% and 33%, and these were then evaluated in batch and fed‐batch cultures. Lowering AAs in basal and feed medium and reducing feed rate from 10% to 5% reduced inhibitory metabolites HICA and NAP by up to 50%, MSA by 30%, and CMP by 15%. These reductions were accompanied by a 13% to 40% improvement in peak viable cell densities and 7% to 50% enhancement in IgG production in batch and fed‐batch processes, respectively. This study demonstrates the value of tuning specific AA levels in reference basal and feed media using statistical design methodologies to lower problematic IMs.

     
    more » « less
  8. Free, publicly-accessible full text available July 1, 2025
  9. Free, publicly-accessible full text available June 1, 2025
  10. Free, publicly-accessible full text available March 1, 2025