Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper aims to design and implement a radio device capable of detecting a person’s handwriting through a wall. Although there is extensive research on radio frequency (RF) based human activity recognition, this task is particularly challenging due to the through-wall requirement and the tiny-scale handwriting movements. To address these challenges, we present RadSee—a 6 GHz frequency modulated continuous wave (FMCW) radar system designed for detecting handwriting content behind a wall. RadSee is realized through a joint hardware and software design. On the hardware side, RadSee features a 6 GHz FMCW radar device equipped with two custom-designed, high-gain patch antennas. These two antennas provide a sufficient link power budget, allowing RadSee to “see” through most walls with a small transmission power. On the software side, RadSee extracts effective phase features corresponding to the writer’s hand movements and employs a bidirectional LSTM (BiLSTM) model with an attention mechanism to classify handwriting letters. As a result, RadSee can detect millimeter-level handwriting movements and recognize most letters based on their unique phase patterns. Additionally, it is resilient to interference from other moving objects and in-band radio devices. We have built a prototype of RadSee and evaluated its performance in various scenarios. Extensive experimental results demonstrate that RadSee achieves 75% letter recognition accuracy when victims write 62 random letters, and 87% word recognition accuracy when they write articles.more » « less
-
UHF RFID tags have been widely used for contactless inventory and tracking applications. One fundamental problem with RFID readers is their limited tag reading rate. Existing RFID readers (e.g., Impinj Speedway) can read about 35 tags per second in a read zone, which is far from enough for many applications. In this paper, we present the first-of-its-kind RFID reader (mReader), which borrows the idea of multi-user MIMO (MU-MIMO) from cellular networks to enable concurrent multi-tag reading in passive RFID systems. mReader is equipped with multiple antennas for implicit beamforming in downlink transmissions. It is enabled by three key techniques: uplink collision recovery, transition-based channel estimation, and zero-overhead channel calibration. In addition, mReader employs a Q-value adaptation algorithm for medium access control to maximize its tag reading rate. We have built a prototype of mReader on USRP X310 and demonstrated for the first time that a two-antenna reader can read two commercial off-the-shelf (COTS) tags simultaneously. Numerical results further show that mReader can improve the tag reading rate by 45% compared to existing RFID readers.more » « less
An official website of the United States government
