skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2100156

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Understanding the movement patterns and behavior of marine organisms is fundamental for numerous ecological, conservation and management applications. Over the past several decades, advancements in tracking technologies and analytical methods have revolutionized our ability to study marine animal movements. Oceanic zooplankton often make up the bulk of the macroscopic animal biomass in the oceans, yet we know very little about the life histories, migrations and long-term behaviors of these ecologically important animals. In this Review, we consider recent developments in marine movement ecology and animal tracking techniques of gelatinous zooplankton, and discuss the challenges, opportunities and future directions in this rapidly evolving field. 
    more » « less
    Free, publicly-accessible full text available February 15, 2026
  2. ABSTRACT Salps are marine pelagic tunicates with a complex life cycle including a solitary and colonial stage. Salp colonies are composed of asexually budded individuals that coordinate their swimming by multi-jet propulsion. Colonies develop into species-specific architectures with distinct zooid orientations. These distinct colonial architectures vary in how frontal area scales with the number of zooids in the colony. Here, we address how differences in frontal area drive differences in swimming speed and the relationship between swimming speed and cost of transport in salps. We (1) compared swimming speed across salp species and architectures, (2) evaluated how swimming speed scales with the number of zooids across colony in architectures, and (3) compared the metabolic cost of transport across species and how it scales with swimming speed. To measure swimming speeds, we recorded swimming salp colonies using in situ videography while SCUBA diving in the open ocean. To estimate the cost of transport, we measured the respiration rates of swimming and anesthetized salps collected in situ using jars equipped with non-invasive oxygen sensors. We found that linear colonies swim faster, which supports the idea that their differential advantage in frontal area scales with an increasing number of zooids. We also found that higher swimming speeds predict lower costs of transport in salps. These findings underscore the importance of considering propeller arrangement to optimize speed and energy efficiency in bioinspired underwater vehicle design, leveraging lessons learned from the diverse natural laboratory provided by salp diversity. 
    more » « less
    Free, publicly-accessible full text available March 15, 2026
  3. Abstract Scyphomedusae are widespread in the oceans and their swimming has provided valuable insights into the hydrodynamics of animal propulsion. Most of this research has focused on symmetrical, linear swimming. However, in nature, medusae typically swim circuitous, nonlinear paths involving frequent turns. Here we describe swimming turns by the scyphomedusaAurelia auritaduring which asymmetric bell margin motions produce rotation around a linearly translating body center. These jellyfish ‘skid’ through turns and the degree of asynchrony between opposite bell margins is an approximate predictor of turn magnitude during a pulsation cycle. The underlying neuromechanical organization of bell contraction contributes substantially to asynchronous bell motions and inserts a stochastic rotational component into the directionality of scyphomedusan swimming. These mechanics are important for natural populations because asynchronous bell contraction patterns are commonin situand result in frequent turns by naturally swimming medusae. 
    more » « less
  4. Abstract Lobate ctenophores are often numerically dominant members of oceanic epipelagic and midwater ecosystems. Despite this, little is known about their trophic ecology. Multiple, co‐occurring species are often found in these ecosystems and appear to feed similarly via feeding currents that entrain prey. We quantified the hydrodynamics, morphology, and behavior of four co‐occurring, cosmopolitan lobate species (Eurhamphaea vexilligera,Ocyropsis crystallina,Bolinopsis vitrea, andLeucothea multicornis) to evaluate whether their feeding mechanics lead to differential feeding rates and prey selection. We compared the feeding characteristics of these four oceanic species to the coastal lobate ctenophore,Mnemiopsis leidyi, which is known as a voracious zooplanktivore. We found that despite their morphological diversity, the five lobate species used the same mechanism to generate their feeding current—the hydrodynamics of their feeding currents were similarly laminar and with very low fluid deformation rates. Despite having similar feeding current traits, the species had different in situ swimming behaviors and feeding postures. We show that these different behaviors and postures lead to different prey encounter rates and that several of the oceanic species have the potential to feed at rates similar to or greater thanM. leidyi. As such, the individual and combined trophic impact of oceanic lobate ctenophores is likely to be much greater than previously predicted. 
    more » « less
  5. Abstract An abundance of swimming animals have converged upon a common swimming strategy using multiple propulsors coordinated as metachronal waves. The shared kinematics suggest that even morphologically and systematically diverse animals use similar fluid dynamic relationships to generate swimming thrust. We quantified the kinematics and hydrodynamics of a diverse group of small swimming animals who use multiple propulsors, e.g. limbs or ctenes, which move with antiplectic metachronal waves to generate thrust. Here we show that even at these relatively small scales the bending movements of limbs and ctenes conform to the patterns observed for much larger swimming animals. We show that, like other swimming animals, the propulsors of these metachronal swimmers rely on generating negative pressure along their surfaces to generate forward thrust (i.e., suction thrust). Relying on negative pressure, as opposed to high pushing pressure, facilitates metachronal waves and enables these swimmers to exploit readily produced hydrodynamic structures. Understanding the role of negative pressure fields in metachronal swimmers may provide clues about the hydrodynamic traits shared by swimming and flying animals. 
    more » « less
  6. Free, publicly-accessible full text available April 1, 2026
  7. Siphonophores are ubiquitous and often highly abundant members of pelagic ecosystems throughout the open ocean. They are unique among animal taxa in that many species use multiple jets for propulsion. Little is known about kinematics of the individual jets produced by nectophores or whether the jets are coordinated during normal swimming behavior. Using remotely operated vehicles and SCUBA, we video recorded the swimming behavior of several physonect species in their natural environment. The pulsed kinematics of the individual nectophores that comprise the siphonophore nectosome were quantified and, based on these kinematics, we examined the coordination of adjacent nectophores. We found that, for the 5 species considered, nectophores located along same side of the nectosomal axis (i.e.; axially aligned) were coordinated and their timing was offset such that they pulsed metachronally. However, this level of coordination did not extend across the nectosome and no coordination was evident between nectophores on opposite sides of the nectosomal axis. For most species, the metachronal contraction waves of nectophores were initiated by the apical nectophores and traveled dorsally. However, the metachronal wave of Apolemia rubriversa traveled in the opposite direction. Although nectophore groups on opposite sides of the nectosome were not coordinated, they pulsed with similar frequencies. This enabled siphonophores to maintain relatively linear trajectories during swimming. The timing and characteristics of the metachronal coordination of pulsed jets affects how the jet wakes interact and may provide important insight into how interacting jets may be optimized for efficient propulsion. 
    more » « less
  8. Many fishes employ distinct swimming modes for routine swimming and predator escape. These steady and escape swimming modes are characterized by dramatically differing body kinematics that lead to context-adaptive differences in swimming performance. Physonect siphonophores, such as Nanomia bijuga , are colonial cnidarians that produce multiple jets for propulsion using swimming subunits called nectophores. Physonect siphonophores employ distinct routine and steady escape behaviors but–in contrast to fishes–do so using a decentralized propulsion system that allows them to alter the timing of thrust production, producing thrust either synchronously (simultaneously) for escape swimming or asynchronously (in sequence) for routine swimming. The swimming performance of these two swimming modes has not been investigated in siphonophores. In this study, we compare the performances of asynchronous and synchronous swimming in N. bijuga over a range of colony lengths (i.e., numbers of nectophores) by combining experimentally derived swimming parameters with a mechanistic swimming model. We show that synchronous swimming produces higher mean swimming speeds and greater accelerations at the expense of higher costs of transport. High speeds and accelerations during synchronous swimming aid in escaping predators, whereas low energy consumption during asynchronous swimming may benefit N. bijuga during vertical migrations over hundreds of meters depth. Our results also suggest that when designing underwater vehicles with multiple propulsors, varying the timing of thrust production could provide distinct modes directed toward speed, efficiency, or acceleration. 
    more » « less
  9. Fish typically swim by periodic bending of their bodies. Bending seems to follow a universal rule; it occurs at about one-third from the posterior end of the fish body with a maximum bending angle of about $$30^{\circ }$$ . However, the hydrodynamic mechanisms that shaped this convergent design and its potential benefit to fish in terms of swimming speed and efficiency are not well understood. It is also unclear to what extent this bending is active or follows passively from the interaction of a flexible posterior with the fluid environment. Here, we use a self-propelled two-link model, with fluid–structure interactions described in the context of the vortex sheet method, to analyse the effects of both active and passive body bending on the swimming performance. We find that passive bending is more efficient but could reduce swimming speed compared with rigid flapping, but the addition of active bending could enhance both speed and efficiency. Importantly, we find that the phase difference between the posterior and anterior sections of the body is an important kinematic factor that influences performance, and that active antiphase flexion, consistent with the passive flexion phase, can simultaneously enhance speed and efficiency in a region of the design space that overlaps with biological observations. Our results are consistent with the hypothesis that fish that actively bend their bodies in a fashion that exploits passive hydrodynamics can at once improve speed and efficiency. 
    more » « less