skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2100367

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chong, Chita; Feng, Qi; Slaman, Theodore_A; Woodin, W_Hugh (Ed.)
    This paper has two parts. The first is concerned with a variant of a family of games introduced by Holy and Schlicht, that we call Welch games. Player II having a winning strategy in the Welch game of length [Formula: see text] on [Formula: see text] is equivalent to weak compactness. Winning the game of length [Formula: see text] is equivalent to [Formula: see text] being measurable. We show that for games of intermediate length [Formula: see text], II winning implies the existence of precipitous ideals with [Formula: see text]-closed, [Formula: see text]-dense trees. The second part shows the first is not vacuous. For each [Formula: see text] between [Formula: see text] and [Formula: see text], it gives a model where II wins the games of length [Formula: see text], but not [Formula: see text]. The technique also gives models where for all [Formula: see text] there are [Formula: see text]-complete, normal, [Formula: see text]-distributive ideals having dense sets that are [Formula: see text]-closed, but not [Formula: see text]-closed. 
    more » « less