skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2100537

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Catalano, Jeffrey; Passey, Benjamin H (Ed.)
    The geochemical characterization of phytoplankton-derived organic compounds found in marine sediments has been widely used to reconstruct atmospheric pCO2 thoughout the Cenozoic. This is possible owing to a well-established relationship between the carbon isotope ratios of phytoplankton biomass and CO2 concentration in the ambient seawater. An ideal molecular target for such proxy reconstructions would be degradation resistant on geologic timescales and unambiguously associated with known, experimentally tractable, organisms, so that species-specific models can be developed, calibrated, and applied to appropriate material. However, existing organic matter targets do not quite meet these criteria, primarily owing to ambiguity in the source species of recalcitrant compounds in deep time. Here we explore the potential of a novel organic carbon target for isotopic analysis: acidic polysaccharides extracted from the calcite plates (coccoliths) that are produced by all calcifying haptophytes. Carbohydrates are usually rapidly remineralized in sediments, but coccolith-associated polysaccharides (CAPs) are mechanically protected from diagenesis within the coccolith calcite lattice. Coccoliths can be taxonomically separated by size and identified, often to species level, prior to CAP extraction, providing a species-specific record. Coccolith morphology and composition are important additional sources of information, which are then unambiguously associated with the extracted CAPs. We find that carbon isotope ratios of CAPs changed in response to the environmental changes associated with a glacial cycle, which we attribute to temperature-driven changes in average growth rate. Once the underlying biosynthetic processes and the associated isotope effects are better understood, this archive of pristine organic matter has the potential to provide insight into phytoplankton growth rates and atmospheric pCO2 far beyond the Cenozoic, to when the first coccolithophores inhabited the surface ocean over 200 million years ago. 
    more » « less
  2. The geological record encodes the relationship between climate and atmospheric carbon dioxide (CO2) over long and short timescales, as well as potential drivers of evolutionary transitions. However, reconstructing CO2beyond direct measurements requires the use of paleoproxies and herein lies the challenge, as proxies differ in their assumptions, degree of understanding, and even reconstructed values. In this study, we critically evaluated, categorized, and integrated available proxies to create a high-fidelity and transparently constructed atmospheric CO2record spanning the past 66 million years. This newly constructed record provides clearer evidence for higher Earth system sensitivity in the past and for the role of CO2thresholds in biological and cryosphere evolution. 
    more » « less