Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding the evolutionary mechanisms underlying the maintenance of individual differences in behavior and physiology is a fundamental goal in ecology and evolution. The pace‐of‐life syndrome hypothesis is often invoked to explain the maintenance of such within‐population variation. This hypothesis predicts that behavioral traits are part of a suite of correlated traits that collectively determine an individual's propensity to prioritize reproduction or survival. A key assumption of this hypothesis is that these traits are underpinned by genetic trade‐offs among life‐history traits: genetic variants that increase fertility, reproduction and growth might also reduce lifespan. We performed a systematic literature review and meta‐analysis to summarize the evidence for the existence of genetic trade‐offs between five key life‐history traits: survival, growth rate, body size, maturation rate, and fertility. Counter to our predictions, we found an overall positive genetic correlation between survival and other life‐history traits and no evidence for any genetic correlations between the non‐survival life‐history traits. This finding was generally consistent across pairs of life‐history traits, sexes, life stages, lab vs. field studies, and narrow‐ vs. broad‐sense correlation estimates. Our study highlights that genetic trade‐offs may not be as common, or at least not as easily quantifiable, in animals as often assumed.more » « less
-
Predation threat is a major driver of behavior in many prey species. Animals can recognize their relative risk of predation based on cues in the environment, including visual and/or chemical cues released by a predator or from its prey. When threat of predation is high, prey often respond by altering their behavior to reduce their probability of detection and/or capture. Here, we test how a clonal fish, the Amazon molly (Poecilia formosa), behaviorally responds to predation cues. We measured aggressive and social behaviors both under ‘risk’, where chemical cues from predatory fish and injured conspecifics were present, and control contexts (no risk cues present). We predicted that mollies would exhibit reduced aggression towards a simulated intruder and increased sociability under risk contexts as aggression might increase their visibility to a predator and shoaling should decrease their chance of capture through the dilution effect. As predicted, we found that Amazon mollies spent more time with a conspecific when risk cues were present, however they did not reduce their aggression. This highlights the general result of the ‘safety in numbers’ behavioral response that many small shoaling species exhibit, including these clonal fish, which suggests that mollies may view this response as a more effective anti-predator response compared to limiting their detectability by reducing aggressive conspecific interactions.more » « less
-
Mapping the eco-evolutionary factors shaping the development of animals’ behavioural phenotypes remains a great challenge. Recent advances in ‘big behavioural data’ research—the high-resolution tracking of individuals and the harnessing of that data with powerful analytical tools—have vastly improved our ability to measure and model developing behavioural phenotypes. Applied to the study of behavioural ontogeny, the unfolding of whole behavioural repertoires can be mapped in unprecedented detail with relative ease. This overcomes long-standing experimental bottlenecks and heralds a surge of studies that more finely define and explore behavioural–experiential trajectories across development. In this review, we first provide a brief guide to state-of-the-art approaches that allow the collection and analysis of high-resolution behavioural data across development. We then outline how such approaches can be used to address key issues regarding the ecological and evolutionary factors shaping behavioural development: developmental feedbacks between behaviour and underlying states, early life effects and behavioural transitions, and information integration across development.more » « less
-
The study of individual behavioral variation, sometimes called animal personalities or behavioral types, is now a well-established area of research in behavioral ecology and evolution. Considerable theoretical work has developed predictions about its ecological and evolutionary causes and consequences, and studies testing these theories continue to grow. Here, we synthesize the current empirical work to shed light on which theories are well supported and which need further refinement. We find that the major frameworks explaining the existence of individual behavioral variation, the pace-of-life syndrome hypothesis and state-dependent feedbacks models, have mixed support. The consequences of individual behavioral variation are well studied at the individual level but less is known about consequences at higher levels such as among species and communities. The focus of this review is to reevaluate and reestablish the foundation of individual behavioral variation research: What do we know? What questions remain? And where are we going next?more » « less