Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT PocheinaandAcrasisare two genera of heterolobosean sorocarpic amoebae within Acrasidae that have historically been considered close relatives. The two genera were differentiated based on their differing fruiting body morphologies. The validity of this taxonomic distinction was challenged when a SSU rRNA phylogenetic study placed an isolate morphologically identified as “Pocheina”roseawithin a clade ofAcrasis roseaisolates. The authors speculated that pocheinoid fruiting body morphology might be the result of aberrantAc.roseafruiting body development, which, if true, would nullify this taxonomic distinction between genera. To clarify Acrasidae systematics, we analyzed SSU rRNA and ITS region sequences from multiple isolates ofPocheina,Acrasis, andAllovahlkampfiagenerated by Polymerase Chain Reaction (PCR) and transcriptomics. We demonstrate that the initial SSU sequence attributed to “P.rosea” originated from anAc.roseaDNA contamination in its amplification reaction. Our analyses, based on morphology, SSU and 5.8S rRNA gene phylogenies, as well as comparative analyses of ITS1 and ITS2 sequences, resolve Acrasidae into three major lineages:Allovahlkampfiaand the strongly supported clades comprisingPocheinaandAcrasis. We confirm that the latter two genera can be identified by their fruiting body morphologies.more » « less
- 
            Abstract Acrasids are amoebae with the capacity to form multicellular fruiting bodies in a process known as aggregative multicellularity (AGM). This makes acrasids the only known example of multicellularity among the earliest branches of eukaryotes (the former Excavata). Here, we report theAcrasis konagenome sequence plus transcriptomes from pre-, mid- and post-developmental stages. The genome is rich in novelty and genes with strong signatures of horizontal transfer, and multigene families encode nearly half of the amoeba’s predicted proteome. Development inA. konaappears molecularly simple relative to the AGM model,Dictyostelium discoideum. However, the acrasid also differs from the dictyostelid in that it does not appear to be starving during development. Instead, developingA. konaappears to be very metabolically active, does not induce autophagy and does not up-regulate its proteasomal genes. Together, these observations strongly suggest that starvation is not essential for AGM development. Nonetheless, development in the two amoebae appears to employ remarkably similar pathways for signaling, motility and, potentially, construction of an extracellular matrix surrounding the developing cell mass. Much of this similarity is also shared with animal development, suggesting that much of the basic tool kit for multicellular development arose early in eukaryote evolution.more » « less
- 
            ABSTRACT PocheinaandAcrasisare two genera of heterolobosean sorocarpic amoebae within Acrasidae that have historically been considered close relatives. The two genera were differentiated based on their differing fruiting body morphologies. The validity of this taxonomic distinction was challenged when a SSU rRNA phylogenetic study placed an isolate morphologically identified as ‘Pocheina’roseawithin a clade ofAcrasis roseaisolates. The authors speculated that pocheinoid fruiting body morphology might be the result of aberrantA. roseafruiting body development, which if true, would nullify this taxonomic distinction between genera. To clarify Acrasidae systematics, we analyzed SSU rRNA and ITS region sequences from multiple isolates ofPocheina, Acrasis, andAllovahlkampfiagenerated by PCR and transcriptomics. We demonstrate that the initial SSU sequence attributed to ‘P. rosea’ originated from anA. roseaDNA contamination in its amplification reaction. Our analyses, based on morphology, SSU and 5.8S rRNA genes phylogenies, as well as comparative analyses of ITS1 and ITS2 sequences, resolve Acrasidae into three major lineages;Allovahlkampfiaand the strongly supported clades comprisingPocheinaandAcrasis. We confirm that the latter two genera can be identified by their fruiting body morphologies.more » « less
- 
            Abstract Profile mixture models capture distinct biochemical constraints on the amino acid substitution process at different sites in proteins. These models feature a mixture of time-reversible models with a common matrix of exchangeabilities and distinct sets of equilibrium amino acid frequencies known as profiles. Combining the exchangeability matrix with each profile generates the matrix of instantaneous rates of amino acid exchange for that profile. Currently, empirically estimated exchangeability matrices (e.g. the LG matrix) are widely used for phylogenetic inference under profile mixture models. However, these were estimated using a single profile and are unlikely optimal for profile mixture models. Here, we describe the GTRpmix model that allows maximum likelihood estimation of a common exchangeability matrix under any profile mixture model. We show that exchangeability matrices estimated under profile mixture models differ from the LG matrix, dramatically improving model fit and topological estimation accuracy for empirical test cases. Because the GTRpmix model is computationally expensive, we provide two exchangeability matrices estimated from large concatenated phylogenomic-supermatrices to be used for phylogenetic analyses. One, called Eukaryotic Linked Mixture (ELM), is designed for phylogenetic analysis of proteins encoded by nuclear genomes of eukaryotes, and the other, Eukaryotic and Archaeal Linked mixture (EAL), for reconstructing relationships between eukaryotes and Archaea. These matrices, combined with profile mixture models, fit data better and have improved topology estimation relative to the LG matrix combined with the same mixture models. Starting with version 2.3.1, IQ-TREE2 allows users to estimate linked exchangeabilities (i.e. amino acid exchange rates) under profile mixture models.more » « less
- 
            Abstract The salamander,Ambystoma annulatum, is considered a “species of special concern” in the state of Arkansas, USA, due to its limited geographic range, specialized habitat requirements and low population size. Although metazoan parasites have been documented in this salamander species, neither its native protists nor microbiome have yet been evaluated. This is likely due to the elusive nature and under‐sampling of the animal. Here, we initiate the cataloguing of microbial associates with the identification of a new heterlobosean species,Naegleria lustrarean. sp. (Excavata, Discoba, Heterolobosea), isolated from feces of an adultA. annulatum.more » « less
- 
            ABSTRACT Phylogenies built from multiple genes have become a common component of evolutionary biology studies. Molecular phylogenomic matrices used to build multi-gene phylogenies can be built from either nucleotide or protein matrices. Nucleotide-based analyses are often more appropriate for addressing phylogenetic questions in evolutionarily shallow timescales (i.e., less than 100 million years) while protein-based analyses are often more appropriate for addressing deep phylogenetic questions. PhyloFisher is a phylogenomic software package written in Python3. The manually curated PhyloFisher database contains 240 protein-coding genes from 304 eukaryotic taxa. Here we presentnucl_matrix_constructor.py, an expansion of the PhyloFisher starting database, and an update to PhyloFisher that maintains DNA sequences. This combination will allow users the ability to easily build nucleotide phylogenomic matrices while retaining the benefits of protein-based pre-processing used to identify contaminants and paralogy.more » « less
- 
            Abstract Biological soil crusts represent a rich habitat for diverse and complex eukaryotic microbial communities. A unique but extremely common habitat is the urban sidewalk and its cracks that collect detritus. While these habitats are ubiquitous across the globe, little to no work has been conducted to characterize protists found there. Amoeboid protists are major predators of bacteria and other microbial eukaryotes in these microhabitats and therefore play a substantial ecological role. From sidewalk crack soil crusts, we have isolated three naked amoebae with finely tapered subpseudopodia, and a simple life cycle consisting of a trophic amoeba and a cyst stage. Using a holistic approach including light, electron, and fluorescence microscopy as well as phylogenetics using the ribosomal small subunit rRNA gene and phylogenomics using 230 nuclear genes, we find that these amoeboid organisms fail to match any previously described eukaryote genus. However, we determined the amoebae belong to the amoebozoan lineage Variosea based on phylogenetics. The molecular analyses place our isolates in two novel genera forming a grade at the base of the variosean group Protosteliida. These three novel varioseans among two novel genera and species are herein named “Kanabo kenzan” and “Parakanabo toge.”more » « less
- 
            Abstract PhyloFisher is a software package written primarily in Python3 that can be used for the creation, analysis, and visualization of phylogenomic datasets that consist of protein sequences from eukaryotic organisms. Unlike many existing phylogenomic pipelines, PhyloFisher comes with a manually curated database of 240 protein‐coding genes, a subset of a previous phylogenetic dataset sampled from 304 eukaryotic taxa. The software package can also utilize a user‐created database of eukaryotic proteins, which may be more appropriate for shallow evolutionary questions. PhyloFisher is also equipped with a set of utilities to aid in running routine analyses, such as the prediction of alternative genetic codes, removal of genes and/or taxa based on occupancy/completeness of the dataset, testing for amino acid compositional heterogeneity among sequences, removal of heterotachious and/or fast‐evolving sites, removal of fast‐evolving taxa, supermatrix creation from randomly resampled genes, and supermatrix creation from nucleotide sequences. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Constructing a phylogenomic dataset Basic Protocol 2: Performing phylogenomic analyses Support Protocol 1: Installing PhyloFisher Support Protocol 2: Creating a custom phylogenomic databasemore » « less
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Heterotrophic protists are vital in Earth’s ecosystems, influencing carbon and nutrient cycles and occupying key positions in food webs as microbial predators. Fossils and molecular data suggest the emergence of predatory microeukaryotes and the transition to a eukaryote-rich marine environment by 800 million years ago (Ma). Neoproterozoic vase-shaped microfossils (VSMs) linked to Arcellinida testate amoebae represent the oldest evidence of heterotrophic microeukaryotes. This study explores the phylogenetic relationship and divergence times of modern Arcellinida and related taxa using a relaxed molecular clock approach. We estimate the origin of nodes leading to extant members of the Arcellinida Order to have happened during the latest Mesoproterozoic and Neoproterozoic (1054 to 661 Ma), while the divergence of extant infraorders postdates the Silurian. Our results demonstrate that at least one major heterotrophic eukaryote lineage originated during the Neoproterozoic. A putative radiation of eukaryotic groups (e.g., Arcellinida) during the early-Neoproterozoic sustained by favorable ecological and environmental conditions may have contributed to eukaryotic life endurance during the Cryogenian severe ice ages. Moreover, we infer that Arcellinida most likely already inhabited terrestrial habitats during the Neoproterozoic, coexisting with terrestrial Fungi and green algae, before land plant radiation. The most recent extant Arcellinida groups diverged during the Silurian Period, alongside other taxa within Fungi and flowering plants. These findings shed light on heterotrophic microeukaryotes’ evolutionary history and ecological significance in Earth’s ecosystems, using testate amoebae as a proxy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
