Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A total of 14 extensometers were installed in Houston-Galveston Region, Texas, USA, at 12 locations to record compaction. The earliest extensometer began to record compaction in 1973. Records from three of the extensometers installed at Baytown (Shallow and Deep) and Pasadena exhibit anomalous subsidence from 2009 to 2017. The maximum compaction occurred around 2014 with Baytown Shallow recording 164 mm, Baytown Deep 72 mm, and Pasadena 135 mm. The anomalous subsidence exhibits features not related to primary consolidation subsidence (PCS) and secondary consolidation subsidence (SCS) of the Gulf Coast Aquifer System (GCAS). Groundwater level records at the extensometer locations indicate that the anomalous subsidence is not related to groundwater exploitation and creep of the GCAS in this region. Analysis of compaction data for the three sites indicates that the subsidence is partially elastic. Salt dome growth/evolution resulting in activation/reactivation of subsurface and surface faults is proposed as the mechanism responsible for the anomalous subsidence.more » « less
-
The rate at which sea level is rising in recent years due to global warming has become a growing concern, most especially as it affects coastal areas of the world. The devastating impact of sea level rise (SLR) on coastal communities, ranging from coastal beach erosion, nuisance high tide flooding, and saltwater pollution of low-lying farmlands to loss of tidal wetlands is leading to a decline in social and economic activities especially in coastal areas. According to the National Oceanic and Atmospheric Administration (NOAA), 40% of the US population living on the coast is inevitably vulnerable to SLR. Therefore, the objective of this study is to project relative sea level rise (RSLR) for Anne Arundel County and to estimate the contribution of land subsidence to RSLR at this location. To project RSLR for Anne Arundel County, this study combines global mean sea level rise (GMSLR) scenarios with local land subsidence measured at GPS LOYF station in Annapolis, Anne Arundel County, Maryland. Current quadratic trend of RSLR in Anne Arundel County projects that by 2100, RSLR for the county will be approximately 1.2 m forecasting from 1992, which is 86% and 174% of the GMSLR intermediate-high and intermediate-low scenarios, respectively. Land subsidence significantly contributed to RSLR in the 20th century; however, since 2001 absolute sea level rise (ASLR) driven by climate change has significantly contributed to RSLR in this location. The results in this paper suggest considering the intermediate-high RSLR scenario for planning and decision-making in Anne Arundel County, Maryland, in relation to SLR.more » « less
-
The Chesapeake Bay (CB) is the largest estuary in the United States, and a large bolide crashed into it 35 million years ago. This study analyzed observations from seven pairs of closely spaced tide gauges (TG) and GPS stations around the CB to simulate relative sea level rise (RSLR) since the 20th century. Outcrops or subcrops are pre-Cretaceous (pre-C), Cretaceous (C), Tertiary (T), and Quaternary (Q) from the Northwest to the Southeast in the CB coastal plain. RSLR at TG is assumed to be the sum of paired GPS-detected land subsidence (LS) and absolute sea level rise (ASLR) in this paper. Before 1992 in the 20th century, TG Washington, DC, located in the pre-C outcrop/subcrop zone appears to have RSLR and LS rates of (2.68, 1.58) mm/year; TG Baltimore in the C zone (3.0, 1.9) mm/year; TGs Annapolis, Cambridge, and Solomon Island in the T zone (3.39, 2.24) mm/year, (3.45, 2.34) mm/year, and (3.75, 2.66) mm/year, respectively; and TGs Kiptopeke and Yorktown in the Q zone (4.05, 2.95) mm/year and (3.06, 1.96) mm/year, respectively. The LS rate increases from the pre-C through Q zones except the Yorktown station impacted by the crater; the ASLR before 1992 in the 20th century in the CB area is in the range of 1.10 mm/year–1.15 mm/year by removing LS from RSLR at above seven TG locations.more » « less
-
ABSTRACT The compaction measurements of Quaternary and Tertiary Gulf Coast aquifer system sediments in the Houston-Galveston region (TX) show spatially variable compression of 0.08 to 8.49 mm/yr because of geohistorical overburden pressure when groundwater levels in the aquifer system were stable after about the year 2000. An aquifer-system creep equation is developed for evaluating this variable compression, with a thickness-weighted average creep coefficient based on Taylor's (1942) secondary consolidation theory. The temporal variation of aquifer system creep can be neglected in a short-term observation period (such as a decade) after a long-term creep period (such as over 1,000 years) in geohistory. The creep coefficient of the Gulf Coast aquifer system is found to be in a range of 8.74 × 10−5 to 3.94 × 10−3 (dimensionless), with an average of 1.38 × 10−3. Moreover, for silty clay or clay-dominant aquitards in the Gulf Coast aquifer system the creep coefficient value varies in the range of 2.21 × 10−4 to 3.94 × 10−3, which is consistent with values found by Mesri (1973) for most soils, which vary in the range of creep coefficient, 1 × 10−4 to 5 × 10−3. Land subsidence due to secondary consolidation of the Gulf Coast aquifer system is estimated to be 0.04 to 4.33 m in the 20th century and is projected to be 0.01 to 0.64 m in the 21st century at the 13 borehole extensometer locations in the Houston-Galveston region. The significant creep should be considered in the relative sea level rise, in addition to tectonic subsidence and primary consolidation.more » « less
An official website of the United States government
