skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2101140

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Design of nucleic acid-based viral diagnostics typically follows heuristic rules and, to contend with viral variation, focuses on a genome’s conserved regions. A design process could, instead, directly optimize diagnostic effectiveness using a learned model of sensitivity for targets and their variants. Toward that goal, we screen 19,209 diagnostic–target pairs, concentrated on CRISPR-based diagnostics, and train a deep neural network to accurately predict diagnostic readout. We join this model with combinatorial optimization to maximize sensitivity over the full spectrum of a virus’s genomic variation. We introduce Activity-informed Design with All-inclusive Patrolling of Targets (ADAPT), a system for automated design, and use it to design diagnostics for 1,933 vertebrate-infecting viral species within 2 hours for most species and within 24 hours for all but three. We experimentally show that ADAPT’s designs are sensitive and specific to the lineage level and permit lower limits of detection, across a virus’s variation, than the outputs of standard design techniques. Our strategy could facilitate a proactive resource of assays for detecting pathogens. 
    more » « less
  2. Free, publicly-accessible full text available April 24, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. In this paper, we derive parameterized Chernoff bounds and show their applications for simplifying the analysis of some well-known probabilistic algorithms and data structures. The parameterized Chernoff bounds we provide give probability bounds that are powers of two, with a clean formulation of the relation between the constant in the exponent and the relative distance from the mean. In addition, we provide new simplified analyses with these bounds for hash tables, randomized routing, and a simplified, non-recursive adaptation of the Floyd-Rivest selection algorithm. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Free, publicly-accessible full text available January 1, 2026
  6. Free, publicly-accessible full text available December 1, 2025
  7. Free, publicly-accessible full text available December 1, 2025
  8. Free, publicly-accessible full text available November 18, 2025