skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2102028

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Two-dimensional (2D) kagome lattice metals are interesting because their corner sharing triangle structure enables a wide array of electronic and magnetic phenomena. Recently, post-growth annealing is shown to both suppress charge density wave (CDW) order and establish long-range CDW with the ability to cycle between states repeatedly in the kagome antiferromagnet FeGe. Here we perform transport, neutron scattering, scanning transmission electron microscopy (STEM), and muon spin rotation (μSR) experiments to unveil the microscopic mechanism of the annealing process and its impact on magneto-transport, CDW, and magnetism in FeGe. Annealing at 560 °C creates uniformly distributed Ge vacancies, preventing the formation of Ge-Ge dimers and thus CDW, while 320 °C annealing concentrates vacancies into stoichiometric FeGe regions with long-range CDW. The presence of CDW order greatly affects the anomalous Hall effect, incommensurate magnetic order, and spin-lattice coupling in FeGe, placing FeGe as the only kagome lattice material with tunable CDW and magnetic order. 
    more » « less
    Free, publicly-accessible full text available April 7, 2026
  2. The spin Seebeck effect (SSE) is sensitive to thermally driven magnetic excitations in magnetic insulators. Vanadium dioxide in its insulating low-temperature phase is expected to lack magnetic degrees of freedom, as vanadium atoms are thought to form singlets upon dimerization of the vanadium chains. Instead, we find a paramagnetic SSE response in V⁢O2 films that grows as the temperature decreases below 50 K. The field and temperature-dependent SSE voltage is qualitatively consistent with a general model of paramagnetic SSE response and inconsistent with triplet spin transport. Quantitative estimates find a spin Seebeck coefficient comparable in magnitude to that observed in strongly magnetic materials. The microscopic nature of the magnetic excitations in V⁢O2 requires further examination. 
    more » « less
  3. As spin caloritronic measurements become increasingly common techniques for characterizing material properties, it is important to quantify potentially confounding effects. We report measurements of the Nernst–Ettingshausen response from room temperature to 5 K in thin film wires of Pt and W, metals commonly used as inverse spin Hall detectors in spin Seebeck characterization. Johnson–Nyquist noise thermometry is used to assess the temperature change in the metals with heater power at low temperatures, and the thermal path is analyzed via finite-element modeling. The Nernst–Ettingshausen response of W is found to be approximately temperature-independent, while the response of Pt increases at low temperatures. These results are discussed in the context of theoretical expectations and the possible role of magnetic impurities in Pt. 
    more » « less
  4. The low temperature monoclinic, insulating phase of vanadium dioxide is ordinarily considered nonmagnetic, with dimerized vanadium atoms forming spin singlets, though paramagnetic response is seen at low temperatures. We find a nonlocal spin Seebeck signal in VO2 films that appears below 30 K and that increases with a decrease in temperature. The spin Seebeck response has a nonhysteretic dependence on the in-plane external magnetic field. This paramagnetic spin Seebeck response is discussed in terms of prior findings on paramagnetic spin Seebeck effects and expected magnetic excitations of the monoclinic ground state. 
    more » « less